
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9010210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving carotenoid production in recombinant yeast, <i>Saccharomyces cerevisiae</i> , using ultrasoundâ€irradiated twoâ€phase extractive fermentation. Engineering in Life Sciences, 2022, 22, 4-12.	2.0	5
2	Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2022, 38, 38.	1.7	11
3	Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy. Journal of Bioscience and Bioengineering, 2021, 131, 283-289.	1.1	5
4	Saccharomyces cerevisiae as a microbial cell factory. , 2021, , 319-333.		5
5	Pichia pastoris-based microbial cell factories. , 2021, , 335-344.		0
6	Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2021, 37, 19.	1.7	6
7	N-linked glycosylation of thermostable lipase from Bacillus thermocatenulatus to improve organic solvent stability. Enzyme and Microbial Technology, 2020, 132, 109416.	1.6	16
8	Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient d-lactic acid production. Applied Microbiology and Biotechnology, 2020, 104, 9147-9158.	1.7	25
9	Identification of genes responsible for reducing palladium ion in Escherichia coli. Journal of Biotechnology, 2020, 324, 7-10.	1.9	6
10	Construction of yeast producing patchoulol by global metabolic engineering strategy. Biotechnology and Bioengineering, 2020, 117, 1348-1356.	1.7	18
11	CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World Journal of Microbiology and Biotechnology, 2019, 35, 111.	1.7	22
12	Toward the construction of a technology platform for chemicals production from methanol: d-lactic acid production from methanol by an engineered yeast Pichia pastoris. World Journal of Microbiology and Biotechnology, 2019, 35, 37.	1.7	41
13	Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution. Applied Biochemistry and Biotechnology, 2019, 189, 810-821.	1.4	27
14	Modification of lipase from Candida cylindracea with dextran using the borane-pyridine complex to improve organic solvent stability. Journal of Biotechnology, 2019, 296, 1-6.	1.9	11
15	Chemical treatments for modification and immobilization to improve the solvent-stability of lipase. World Journal of Microbiology and Biotechnology, 2019, 35, 193.	1.7	19
16	Improvement of the organic solvent stability of a commercial lipase by chemical modification with dextran. Biochemical Engineering Journal, 2019, 142, 1-6.	1.8	16
17	Secretory overexpression of the endoglucanase by Saccharomyces cerevisiae via CRISPR-Î-integration and multiple promoter shuffling. Enzyme and Microbial Technology, 2019, 121, 17-22.	1.6	23
18	Enhancement of the catalytic activity of d-lactate dehydrogenase from Sporolactobacillus laevolacticus by site-directed mutagenesis. Biochemical Engineering Journal, 2018, 133, 214-218.	1.8	7

#	Article	IF	CITATIONS
19	Secretory Overexpression of <i>Bacillus thermocatenulatus</i> Lipase in <i>Saccharomyces cerevisiae</i> Using Combinatorial Library Strategy. Biotechnology Journal, 2018, 13, e1700409.	1.8	5
20	Rapid and stable production of 2,3-butanediol by an engineered <i>Saccharomyces cerevisiae</i> strain in a continuous airlift bioreactor. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 305-311.	1.4	8
21	Modulation of gene expression by cocktail l´-integration to improve carotenoid production in Saccharomyces cerevisiae. Bioresource Technology, 2018, 268, 616-621.	4.8	16
22	Development of sucrose-complexed lipase to improve its transesterification activity and stability in organic solvents. Biochemical Engineering Journal, 2017, 121, 83-87.	1.8	10
23	Global Metabolic Engineering of Glycolytic Pathway <i>via</i> Multicopy Integration in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2017, 6, 659-666.	1.9	22
24	Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World Journal of Microbiology and Biotechnology, 2017, 33, 99.	1.7	38
25	Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail δ-integration. Bioresource Technology, 2017, 245, 1558-1566.	4.8	25
26	Enhanced <scp>d</scp> â€lactic acid production by recombinant <i>Saccharomyces cerevisiae</i> following optimization of the global metabolic pathway. Biotechnology and Bioengineering, 2017, 114, 2075-2084.	1.7	46
27	Development and evaluation of consolidated bioprocessing yeast for ethanol production from ionic liquid-pretreated bagasse. Bioresource Technology, 2017, 245, 1413-1420.	4.8	28
28	Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochemical Engineering Journal, 2017, 128, 76-82.	1.8	37
29	Transporter engineering in biomass utilization by yeast. FEMS Yeast Research, 2017, 17, .	1.1	35
30	Direct Ethanol Production from Ionic Liquid-Pretreated Lignocellulosic Biomass by Cellulase-Displaying Yeasts. Applied Biochemistry and Biotechnology, 2017, 182, 229-237.	1.4	41
31	Combinatorial library strategy for strong overexpression of the lipase from Geobacillus thermocatenulatus on the cell surface of yeast Pichia pastoris. Biochemical Engineering Journal, 2016, 113, 7-11.	1.8	15
32	Immobilization of proteins on synthetic resins using supercritical carbon dioxide. Journal of Supercritical Fluids, 2016, 107, 566-570.	1.6	3
33	Random mutagenesis and selection of organic solventâ€stable haloperoxidase from <i>Streptomyces aureofaciens</i> . Biotechnology Progress, 2015, 31, 917-924.	1.3	16
34	Effective saccharification of kraft pulp by using a cellulase cocktail prepared from genetically engineered Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1034-1037.	0.6	9
35	Improvement of the stability and activity of the BPO-A1 haloperoxidase from Streptomyces aureofaciens by directed evolution. Journal of Biotechnology, 2014, 192, 248-254.	1.9	23
36	l-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresource Technology, 2014, 173, 376-383.	4.8	35

#	Article	IF	CITATIONS
37	Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microbial Cell Factories, 2014, 13, 71.	1.9	47
38	Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express, 2013, 3, 34.	1.4	44
39	Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microbial Cell Factories, 2013, 12, 66.	1.9	69
40	Green synthesis of Au, Pd and Au@Pd core–shell nanoparticles via a tryptophan induced supramolecular interface. RSC Advances, 2013, 3, 18367.	1.7	20
41	Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Research Letters, 2013, 8, 70.	3.1	132
42	Display of active beta-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Applied Microbiology and Biotechnology, 2013, 97, 4343-4352.	1.7	6
43	Cocktail Î ⁻ -integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2013, 116, 333-336.	1.1	32
44	Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration. Bioresource Technology, 2013, 147, 84-88.	4.8	21
45	Sidewall modification of multiwalled carbon nanotubes by Allivum sativum (garlic) and its effect on the deposition of gold nanoparticles. Carbon, 2013, 56, 309-316.	5.4	11
46	Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnology Advances, 2013, 31, 754-763.	6.0	89
47	Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy and Environmental Science, 2013, 6, 1844.	15.6	103
48	An integrative process model of enzymatic biodiesel production through ethanol fermentation of brown rice followed by lipase-catalyzed ethanolysis in a water-containing system. Enzyme and Microbial Technology, 2013, 52, 118-122.	1.6	12
49	Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Journal of Biotechnology, 2012, 158, 203-210.	1.9	125
50	Recent developments in yeast cell surface display toward extended applications in biotechnology. Applied Microbiology and Biotechnology, 2012, 95, 577-591.	1.7	115
51	Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology, 2012, 94, 1585-1592.	1.7	19
52	Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme and Microbial Technology, 2012, 50, 343-347.	1.6	51
53	Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chemistry, 2011, 13, 2948.	4.6	64
54	Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 89, 1417-1422.	1.7	17

#	Article	IF	CITATIONS
55	Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Applied Microbiology and Biotechnology, 2011, 90, 377-384.	1.7	53
56	Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories, 2011, 10, 2.	1.9	220
57	Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiaewith optimized cellulase expression. Biotechnology for Biofuels, 2011, 4, 8.	6.2	112
58	Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enzyme and Microbial Technology, 2011, 48, 393-396.	1.6	40
59	Ethanol production from cellulosic materials using cellulaseâ€expressing yeast. Biotechnology Journal, 2010, 5, 449-455.	1.8	75
60	Novel strategy for yeast construction using Î-integration and cell fusion to efficiently produce ethanol from raw starch. Applied Microbiology and Biotechnology, 2010, 85, 1491-1498.	1.7	83
61	Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Applied Microbiology and Biotechnology, 2010, 87, 109-115.	1.7	28
62	Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, 2010, 88, 381-388.	1.7	135
63	Gene copy number and polyploidy on products formation in yeast. Applied Microbiology and Biotechnology, 2010, 88, 849-857.	1.7	41
64	Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Applied Microbiology and Biotechnology, 2010, 88, 1215-1221.	1.7	39
65	Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories, 2010, 9, 32.	1.9	145
66	Improved Production of Homo- <scp>d</scp> -Lactic Acid via Xylose Fermentation by Introduction of Xylose Assimilation Genes and Redirection of the Phosphoketolase Pathway to the Pentose Phosphate Pathway in <scp>l</scp> -Lactate Dehydrogenase Gene-Deficient <i>Lactobacillus plantarum</i> . Applied and Environmental Microbiology, 2009, 75, 7858-7861.	1.4	84
67	Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme and Microbial Technology, 2009, 44, 344-349.	1.6	44
68	Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of β-glucosidase on its cell surface. Enzyme and Microbial Technology, 2008, 43, 233-236.	1.6	50