Ellen N Kersh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9009381/publications.pdf

Version: 2024-02-01

59	1,707	18	39
papers	citations	h-index	g-index
61	61	61	1818
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gonococcal Clinical Strains Bearing a Common <i>gdhR</i> Single Nucleotide Polymorphism That Results in Enhanced Expression of the Virulence Gene <i>lctP</i> Frequently Possess a <i>mtrR</i> Promoter Mutation That Decreases Antibiotic Susceptibility. MBio, 2022, 13, e0027622.	1.8	4
2	Global Emergence and Dissemination of <i>Neisseria gonorrhoeae</i> Susceptibility to Azithromycin. Genome Biology and Evolution, 2022, 14, .	1.1	5
3	Selective Whole-Genome Amplification as a Tool to Enrich Specimens with Low Treponema pallidum Genomic DNA Copies for Whole-Genome Sequencing. MSphere, 2022, 7, e0000922.	1.3	12
4	Atypical Mutation in Neisseria gonorrhoeae 23S rRNA Associated with High-Level Azithromycin Resistance. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	12
5	At-Home Specimen Self-Collection and Self-Testing for Sexually Transmitted Infection Screening Demand Accelerated by the COVID-19 Pandemic: a Review of Laboratory Implementation Issues. Journal of Clinical Microbiology, 2021, 59, e0264620.	1.8	25
6	A Commentary on Current Diagnostic Challenges and Research Needs for Evaluating Reproductive Sequelae of Sexually Transmitted Infections. Journal of Infectious Diseases, 2021, 224, S72-S74.	1.9	1
7	Genomic Analysis of the Predominant Strains and Antimicrobial Resistance Determinants Within 1479 Neisseria gonorrhoeae Isolates From the US Gonococcal Isolate Surveillance Project in 2018. Sexually Transmitted Diseases, 2021, 48, S78-S87.	0.8	19
8	Development of a syphilis serum bank to support research, development, and evaluation of syphilis diagnostic tests in the United States. Diagnostic Microbiology and Infectious Disease, 2020, 96, 114913.	0.8	8
9	A Culture Collection of 50 Neisseria gonorrhoeae Isolates. Microbiology Resource Announcements, 2020, 9, .	0.3	2
10	Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: a genomic analysis of surveillance data. Lancet Microbe, The, 2020, 1, e154-e164.	3.4	42
11	Expanding U.S. Laboratory Capacity for Neisseria gonorrhoeae Antimicrobial Susceptibility Testing and Whole-Genome Sequencing through the CDC's Antibiotic Resistance Laboratory Network. Journal of Clinical Microbiology, 2020, 58, .	1.8	16
12	Genomic Characterization of Neisseria gonorrhoeae Strains from 2016 U.S. Sentinel Surveillance Displaying Reduced Susceptibility to Azithromycin. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	10
13	Evidence Review for Centers for Disease Control and Prevention Guidance Development on Laboratory Testing to Detect Treponema pallidum Infection (Syphilis). Clinical Infectious Diseases, 2020, 71, S1-S3.	2.9	4
14	Successful isolation of Treponema pallidum strains from patients' cryopreserved ulcer exudate using the rabbit model. PLoS ONE, 2020, 15, e0227769.	1.1	13
15	Update to CDC's Treatment Guidelines for Gonococcal Infection, 2020. Morbidity and Mortality Weekly Report, 2020, 69, 1911-1916.	9.0	268
16	Genetic Similarity of Gonococcal Homologs to Meningococcal Outer Membrane Proteins of Serogroup B Vaccine. MBio, 2019, 10, .	1.8	29
17	Rationale for a Neisseria gonorrhoeae Susceptible–only Interpretive Breakpoint for Azithromycin. Clinical Infectious Diseases, 2019, 70, 798-804.	2.9	23
18	Evidence of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to Cephalosporins or Azithromycin in the United States, 2014–2016. Journal of Infectious Diseases, 2019, 220, 294-305.	1.9	38

#	Article	IF	CITATIONS
19	Emergence of Neisseria gonorrhoeae Strains Harboring a Novel Combination of Azithromycin-Attenuating Mutations. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	10
20	Chronic immune barrier dysregulation among women with a history of violence victimization. JCI Insight, $2019,4,.$	2.3	4
21	Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like <i>mtr</i> Efflux Pump Locus. MBio, 2018, 9, .	1.8	70
22	Progestinâ€based contraception regimens modulate expression of putative <scp>HIV</scp> risk factors in the vaginal epithelium of pigâ€tailed Macaques. American Journal of Reproductive Immunology, 2018, 80, e13029.	1.2	4
23	Development of a rectal sexually transmitted infection (STI) Model in Rhesus macaques using <i>Chlamydia trachomatis</i> serovars E and L ₂ . Journal of Medical Primatology, 2017, 46, 218-227.	0.3	6
24	Topical tenofovir protects against vaginal simian HIV infection in macaques coinfected with Chlamydia trachomatis and Trichomonas vaginalis. Aids, 2017, 31, 745-752.	1.0	13
25	Cluster of Neisseria gonorrhoeae Isolates With High-level Azithromycin Resistance and Decreased Ceftriaxone Susceptibility, Hawaii, 2016. Clinical Infectious Diseases, 2017, 65, 918-923.	2.9	59
26	A Macaque Model for Rectal Lymphogranuloma Venereum and Non-Lymphogranuloma Venereum Chlamydia trachomatis: Impact on Rectal Simian/Human Immunodeficiency Virus Acquisition. Sexually Transmitted Diseases, 2017, 44, 551-556.	0.8	3
27	Azithromycin Resistance and Decreased Ceftriaxone Susceptibility in Neisseria gonorrhoeae, Hawaii, USA. Emerging Infectious Diseases, 2017, 23, 830-832.	2.0	58
28	Increases in Endogenous or Exogenous Progestins Promote Virus-Target Cell Interactions within the Non-human Primate Female Reproductive Tract. PLoS Pathogens, 2016, 12, e1005885.	2.1	27
29	A Depot Medroxyprogesterone Acetate Dose That Models Human Use and Its Effect on Vaginal SHIV Acquisition Risk. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 72, 363-371.	0.9	17
30	Combination Emtricitabine and Tenofovir Disoproxil Fumarate Prevents Vaginal Simian/Human Immunodeficiency Virus Infection in Macaques Harboring <i>Chlamydia trachomatis</i> and <i>Trichomonas vaginalis</i> . Journal of Infectious Diseases, 2016, 213, 1541-1545.	1.9	14
31	Relationship of Estimated SHIV Acquisition Time Points During the Menstrual Cycle and Thinning of Vaginal Epithelial Layers in Pigtail Macaques. Sexually Transmitted Diseases, 2015, 42, 694-701.	0.8	11
32	Relationship of menstrual cycle and vaginal infection in female rhesus macaques challenged with repeated, low doses of <scp>SIV</scp> mac251. Journal of Medical Primatology, 2015, 44, 301-305.	0.3	15
33	Analysis of putative mucosal <scp>SHIV</scp> susceptibility factors during repeated <scp>DMPA</scp> treatments in pigtail macaques. Journal of Medical Primatology, 2015, 44, 286-295.	0.3	13
34	Macaque models of enhanced susceptibility to HIV. Virology Journal, 2015, 12, 90.	1.4	7
35	Repeated Vaginal SHIV Challenges in Macaques Receiving Oral or Topical Preexposure Prophylaxis Induce Virus-Specific T-Cell Responses. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 69, 385-394.	0.9	8
36	Rectal Application of a Highly Osmolar Personal Lubricant in a Macaque Model Induces Acute Cytotoxicity but Does Not Increase Risk of SHIV Infection. PLoS ONE, 2015, 10, e0120021.	1.1	9

3

#	Article	IF	Citations
37	Short Communication: Practical Experience with Analysis and Design of Repeat Low-Dose SHIVSF162P3 Exposure Studies in Female Pigtail Macaques with Varying Susceptibility During Menstrual Cycling. AIDS Research and Human Retroviruses, 2015, 31, 1166-1169.	0.5	4
38	A combined oral contraceptive affects mucosal <scp>SHIV</scp> susceptibility factors in a pigtail macaque <i>(Macaca nemestrina)</i>) model. Journal of Medical Primatology, 2015, 44, 97-107.	0.3	7
39	Increased Susceptibility to Vaginal Simian/Human Immunodeficiency Virus Transmission in Pig-tailed Macaques Coinfected With Chlamydia trachomatis and Trichomonas vaginalis. Journal of Infectious Diseases, 2014, 210, 1239-1247.	1.9	34
40	<scp>SHIV</scp> susceptibility changes during the menstrual cycle of pigtail macaques. Journal of Medical Primatology, 2014, 43, 310-316.	0.3	57
41	Development of a rectal sexually transmitted infection – <scp>HIV</scp> coinfection model utilizing <i><scp>C</scp>hlamydia trachomatis</i> and <scp>SHIV</scp> _{SF162p3} . Journal of Medical Primatology, 2014, 43, 135-143.	0.3	6
42	Targeting $\hat{l}\pm4\hat{l}^27$ integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection. Nature Medicine, 2014, 20, 1397-1400.	15.2	134
43	Evaluation of pigtail macaques as a model for the effects of copper intrauterine devices on <scp>HIV</scp> infection. Journal of Medical Primatology, 2014, 43, 349-359.	0.3	6
44	Preclinical evaluation of the immunomodulatory lymphocyte trafficking drug <scp>FTY</scp> 720 for <scp>HIV</scp> prevention in the female genital mucosa of macaques. Journal of Medical Primatology, 2014, 43, 370-373.	0.3	4
45	Nonâ€Human Primate Models of Hormonal Contraception and <scp>HIV</scp> . American Journal of Reproductive Immunology, 2014, 71, 513-522.	1.2	17
46	Short Communication: Viremic Control Is Independent of Repeated Low-Dose SHIV _{SF162p3} Exposures. AIDS Research and Human Retroviruses, 2014, 30, 1125-1129.	0.5	4
47	Susceptibility to Repeated, Low-Dose, Rectal SHIV _{SF162P3} Challenge Is Independent of <i>TRIM5</i> Genotype in Rhesus Macaques. AIDS Research and Human Retroviruses, 2013, 29, 1091-1094.	0.5	6
48	Evaluation of the lymphocyte trafficking drug <scp>FTY</scp> 720 in vaginal tissues. Journal of Medical Primatology, 2013, 42, 89-100.	0.3	4
49	Reduced Inflammation and CD4 Loss in Acute SHIV Infection During Oral Pre-Exposure Prophylaxis. Journal of Infectious Diseases, 2012, 206, 770-779.	1.9	20
50	Hormonal synchronization of the menstrual cycles of pigtail macaques to facilitate biomedical research including modeling HIV susceptibility. Journal of Medical Primatology, 2011, 40, 164-170.	0.3	12
51	Development of a pigtail macaque model of sexually transmitted infection/HIV coinfection using Chlamydia trachomatis, Trichomonas vaginalis, and SHIVSF162P3. Journal of Medical Primatology, 2011, 40, 214-223.	0.3	33
52	High Susceptibility to Repeated, Low-Dose, Vaginal SHIV Exposure Late in the Luteal Phase of the Menstrual Cycle of Pigtail Macaques. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 57, 261-264.	0.9	127
53	Natural Substrate Concentrations Can Modulate the Prophylactic Efficacy of Nucleotide HIV Reverse Transcriptase Inhibitors. Journal of Virology, 2011, 85, 6610-6617.	1.5	69
54	T Cell Chemo-Vaccination Effects after Repeated Mucosal SHIV Exposures and Oral Pre-Exposure Prophylaxis. PLoS ONE, 2011, 6, e19295.	1.1	16

#	Article	IF	CITATION
55	Resistance to Simian HIV Infection Is Associated With High Plasma Interleukin-8, RANTES and Eotaxin in a Macaque Model of Repeated Virus Challenges. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 53, 574-581.	0.9	20
56	Repeated Rectal SHIV _{SF162P3} Exposures Do Not Consistently Induce Sustained T Cell Responses Prior to Systemic Infection in the Repeat-Low Dose Preclinical Macaque Model. AIDS Research and Human Retroviruses, 2009, 25, 905-917.	0.5	16
57	Complete Protection from Repeated Vaginal Simian-Human Immunodeficiency Virus Exposures in Macaques by a Topical Gel Containing Tenofovir Alone or with Emtricitabine. Journal of Virology, 2009, 83, 10358-10365.	1.5	197
58	Evaluation of the lymphocyte trafficking drug FTY720 in SHIVSF162P3-infected rhesus macaques. Journal of Antimicrobial Chemotherapy, 2009, 63, 758-762.	1.3	17
59	Short Communication:No Evidence of Occult SHIV Infection as Demonstrated by CD8+Cell Depletion after Chemoprophylaxis-Induced Protection from Mucosal Infection in Rhesus Macaques. AIDS Research and Human Retroviruses, 2008, 24, 543-546.	0.5	14