Jin-Kyoung Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9009373/publications.pdf

Version: 2024-02-01

516561 580701 31 692 16 25 citations g-index h-index papers 32 32 32 1170 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soluble ICAMâ€1 a Pivotal Communicator between Tumors and Macrophages, Promotes Mesenchymal Shift of Glioblastoma. Advanced Science, 2022, 9, e2102768.	5.6	10
2	A novel biguanide (IM1761065) inhibits bioenergetics of glioblastoma tumorspheres. Journal of Neuro-Oncology, 2022, 156, 139-151.	1.4	2
3	Combinatorial Therapeutic Effect of Inhibitors of Aldehyde Dehydrogenase and Mitochondrial Complex I, and the Chemotherapeutic Drug, Temozolomide against Glioblastoma Tumorspheres. Molecules, 2021, 26, 282.	1.7	6
4	Sensitive label-free imaging of brain samples using FxClear-based tissue clearing technique. IScience, 2021, 24, 102267.	1.9	2
5	Influence of the Amount of Fresh Specimen on the Isolation of Tumor Mesenchymal Stem-Like Cells from High-Grade Glioma. Yonsei Medical Journal, 2021, 62, 936.	0.9	2
6	Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres. Journal of Cancer Research and Clinical Oncology, 2020, 146, 2817-2828.	1.2	18
7	Co-expression of cancer driver genes: IDH-wildtype glioblastoma-derived tumorspheres. Journal of Translational Medicine, 2020, 18, 482.	1.8	4
8	Crosstalk between GBM cells and mesenchymal stemlike cells promotes the invasiveness of GBM through the C5a/p38/ZEB1 axis. Neuro-Oncology, 2020, 22, 1452-1462.	0.6	32
9	DDRE-08. POTENTIAL THERAPEUTIC EFFECTS OF ETOMOXIR IN COMBINATION WITH TEMOZOLOMIDE AGAINST HUMAN GLIOBLASTOMA TUMORSPHERES. Neuro-Oncology, 2020, 22, ii62-ii63.	0.6	0
10	Transcriptome profiling-based identification of prognostic subtypes and multi-omics signatures of glioblastoma. Scientific Reports, 2019, 9, 10555.	1.6	26
11	Gossypol Suppresses Growth of Temozolomide-Resistant Glioblastoma Tumor Spheres. Biomolecules, 2019, 9, 595.	1.8	22
12	Combined treatment with 2′-hydroxycinnamaldehyde and temozolomide suppresses glioblastoma tumorspheres by decreasing stemness and invasiveness. Journal of Neuro-Oncology, 2019, 143, 69-77.	1.4	12
13	Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma. Oncolmmunology, 2019, 8, e1525243.	2.1	46
14	Synthesis and structure-activity relationships of quinolinone and quinoline-based P2X7 receptor antagonists and their anti-sphere formation activities in glioblastoma cells. European Journal of Medicinal Chemistry, 2018, 151, 462-481.	2.6	24
15	Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres. Neuro-Oncology, 2018, 20, 954-965.	0.6	57
16	Proinvasive extracellular matrix remodeling in tumor microenvironment in response to radiation. Oncogene, 2018, 37, 3317-3328.	2.6	38
17	MerTK mediates STAT3–KRAS/SRC-signaling axis for glioma stem cell maintenance. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 87-95.	1.9	18
18	Farnesyl diphosphate synthase is important for the maintenance of glioblastoma stemness. Experimental and Molecular Medicine, 2018, 50, 1-12.	3.2	62

#	Article	IF	CITATIONS
19	Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin. Neuro-Oncology, 2017, 19, now174.	0.6	43
20	Tumor Mesenchymal Stem-Like Cell as a Prognostic Marker in Primary Glioblastoma. Stem Cells International, 2016, 2016, 1-7.	1.2	20
21	Histopathological implications of ventricle wall 5-aminolevulinic acid-induced fluorescence in the absence of tumor involvement on magnetic resonance images. Oncology Reports, 2016, 36, 837-844.	1.2	19
22	Inhibiting stemness and invasive properties of glioblastoma tumorsphere by combined treatment with temozolomide and a newly designed biguanide (HL156A). Oncotarget, 2016, 7, 65643-65659.	0.8	35
23	Isolation and characterization of tumorspheres from a recurrent pineoblastoma patient: Feasibility of a patient-derived xenograft. International Journal of Oncology, 2016, 49, 569-578.	1.4	14
24	Success of tumorsphere isolation from WHO grade IV gliomas does not correlate with the weight of fresh tumor specimens: an immunohistochemical characterization of tumorsphere differentiation. Cancer Cell International, 2016, 16, 75.	1.8	3
25	Failure of a patient-derived xenograft for brain tumor model prepared by implantation of tissue fragments. Cancer Cell International, 2016, 16, 43.	1.8	17
26	Prognostic Value of Glioma Cancer Stem Cell Isolation in Survival of Primary Glioblastoma Patients. Stem Cells International, 2014, 2014, 1-6.	1.2	18
27	Isolation of tumor spheres and mesenchymal stem-like cells from a single primitive neuroectodermal tumor specimen. Child's Nervous System, 2013, 29, 2229-2239.	0.6	14
28	Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Child's Nervous System, 2013, 29, 549-563.	0.6	26
29	Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens. Child's Nervous System, 2013, 29, 217-229.	0.6	51
30	Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. International Journal of Oncology, 2013, 42, 1754-1762.	1.4	30
31	Isolation of mesenchymal stem-like cells in meningioma specimens. International Journal of Oncology, 2013, 43, 1260-1268.	1.4	21