Xuemei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/900933/publications.pdf

Version: 2024-02-01

		116194	162838
126	4,081	36	57
papers	citations	h-index	g-index
128	128	128	5539
all docs	docs citations	times ranked	citing authors
			3

#	Article	IF	CITATIONS
1	Bio-assembled smart nanocapsules for targeted delivery of KRAS shRNA and cancer cell bioimage. Chinese Chemical Letters, 2023, 34, 107651.	4.8	1
2	Engineered Aptamerâ€Organic Amphiphile Selfâ€Assemblies for Biomedical Applications: Progress and Challenges. Small, 2022, 18, e2104341.	5.2	11
3	Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy. Nano Research, 2022, 15, 4164-4174.	5.8	11
4	Tumor-targeted nano-delivery system of therapeutic RNA. Materials Horizons, 2022, 9, 1111-1140.	6.4	19
5	Luminescent gold-peptide spheric aggregates: selective and effective cellular targeting. Journal of Colloid and Interface Science, 2022, 614, 502-510.	5.0	5
6	Hydrogen Peroxide and Hypochlorite Responsive Fluorescent Nanoprobes for Sensitive Cancer Cell Imaging. Biosensors, 2022, 12, 111.	2.3	8
7	Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics. Journal of Biomedical Nanotechnology, 2022, 18, 1-23.	0.5	2
8	Biophysics involved in the process of tumor immune escape. IScience, 2022, 25, 104124.	1.9	5
9	Cancer-exocytosed exosomes loaded with bio-assembled AgNCs as smart drug carriers for targeted chemotherapy. Chemical Engineering Journal, 2022, 440, 135980.	6.6	20
10	Near-Infrared Light-Triggered Nitric Oxide Nanogenerators for NO-Photothermal Synergistic Cancer Therapy. Nanomaterials, 2022, 12, 1348.	1.9	6
11	Glucose-Responsive ZIF-8 Nanocomposites for Targeted Cancer Therapy through Combining Starvation with Stimulus-Responsive Nitric Oxide Synergistic Treatment. ACS Applied Bio Materials, 2022, 5, 2902-2912.	2.3	10
12	Advances in engineered exosomes towards cancer diagnosis and therapeutics. Progress in Biomedical Engineering, 2022, 4, 032002.	2.8	3
13	Folic Acid-Modified Cerium-Doped Carbon Dots as Photoluminescence Sensors for Cancer Cells Identification and Fe(III) Detection. Chemosensors, 2022, 10, 219.	1.8	9
14	Acid-Responsive Multifunctional Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocomposites for Tumor Chemo-Photothermal Synergistic Therapy. Bioconjugate Chemistry, 2022, 33, 1405-1414.	1.8	5
15	Alkaline phosphatase-responsive Zn2+ double-triggered nucleotide capped gold nanoclusters/ alginate hydrogel with recyclable nanozyme capability. Biosensors and Bioelectronics, 2021, 173, 112786.	5.3	15
16	Gold nanoclusters for theranostic applications. Coordination Chemistry Reviews, 2021, 431, 213689.	9.5	96
17	The synthesis of novel fluorescent bimetal nanoclusters for aqueous mercury detection based on aggregation-induced quenching. Analytical Methods, 2021, 13, 2575-2585.	1.3	13
18	Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Materials Horizons, 2021, 8, 2964-3008.	6.4	34

#	Article	IF	CITATIONS
19	Rapid and label-free cancer theranostics <i>via in situ</i> bio-self-assembled DNA–gold nanostructures loaded exosomes. Materials Horizons, 2021, 8, 2771-2784.	6.4	19
20	Biocompatible exosomes nanodrug cargo for cancer cell bioimaging and drug delivery. Biomedical Materials (Bristol), 2021, 16, 025026.	1.7	15
21	Hybrid nanomaterials-based biomedical phototheranostic platforms. Progress in Biomedical Engineering, 2021, 3, 032001.	2.8	O
22	Cysteamine: A key to trigger aggregation-induced NIR-II photothermal effect and silver release booming of gold-silver nanocages for synergetic treatment of multidrug-resistant bacteria infection. Chemical Engineering Journal, 2021, 414, 128779.	6.6	20
23	Biodegradable Metal Organic Frameworks for Multimodal Imaging and Targeting Theranostics. Biosensors, 2021, 11, 299.	2.3	11
24	Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. TrAC - Trends in Analytical Chemistry, 2021, 143, 116376.	5.8	31
25	Versatile roles of silver in Ag-based nanoalloys for antibacterial applications. Coordination Chemistry Reviews, 2021, 449, 214218.	9.5	51
26	Formation of bio-responsive nanocomposites for targeted bacterial bioimaging and disinfection. Chemical Engineering Journal, 2021, 426, 130726.	6.6	9
27	In situ self-assembly of Au-antimiR-155 nanocomplexes mediates TLR3-dependent apoptosis in hepatocellular carcinoma cells. Aging, 2021, 13, 241-261.	1.4	7
28	Aptamer Embedded Arch-Cruciform DNA Assemblies on 2-D VS2 Scaffolds for Sensitive Detection of Breast Cancer Cells. Biosensors, 2021, 11, 378.	2.3	4
29	Intelligent Bio-Responsive Fluorescent Au–shRNA Complexes for Regulated Autophagy and Effective Cancer Bioimaging and Therapeutics. Biosensors, 2021, 11, 425.	2.3	5
30	Microfluidic-Chip-Integrated Biosensors for Lung Disease Models. Biosensors, 2021, 11, 456.	2.3	18
31	Construction of sandwiched self-powered biosensor based on smart nanostructure and capacitor: Toward multiple signal amplification for thrombin detection. Sensors and Actuators B: Chemical, 2020, 304, 127418.	4.0	52
32	Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst, The, 2020, 145, 1294-1301.	1.7	18
33	In situ self-assembling Au-DNA complexes for targeted cancer bioimaging and inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 308-316.	3.3	54
34	Efficient encapsulation of biocompatible nanoparticles in exosomes for cancer theranostics. Nano Today, 2020, 35, 100964.	6.2	33
35	Self-Assembly Fabrication of Honeycomb-like Magnetic–Fluorescent Fe ₃ O ₄ –QDs Nanocomposites for Bimodal Imaging. Langmuir, 2020, 36, 14471-14477.	1.6	7
36	Specific Oxide Nanoclusters Enhance Intracellular Reactive Oxygen Species for Cancer-Targeted Therapy. Langmuir, 2020, 36, 9472-9480.	1.6	15

3

#	Article	IF	CITATIONS
37	Recent advances of BINOL-based sensors for enantioselective fluorescence recognition. Analyst, The, 2020, 145, 6769-6812.	1.7	18
38	In Situ Green Synthesis of Niâ€Doped CsPbBr 3 @SiO 2 Composites with Superior Stability for Fabrication of White Lightâ€Emitting Diodes. ChemistrySelect, 2020, 5, 9920-9925.	0.7	2
39	A novel turn-on fluorescent sensor for the sensitive detection of glutathione <i>via</i> gold nanocluster preparation based on controllable ligand-induced etching. Analyst, The, 2020, 145, 4265-4275.	1.7	9
40	Facet-dependent antibacterial activity of Au nanocrystals. Chinese Chemical Letters, 2020, 31, 3183-3189.	4.8	17
41	How organic ligands affect the phase transition and fluorescent stability of perovskite nanocrystals. Journal of Materials Chemistry C, 2020, 8, 8999-9004.	2.7	20
42	Biosensors Based on Advanced Sulfur-Containing Nanomaterials. Sensors, 2020, 20, 3488.	2.1	15
43	Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. Journal of Materials Chemistry B, 2020, 8, 4764-4777.	2.9	73
44	<i>In situ</i> self-assembled Ag–Fe ₃ O ₄ nanoclusters in exosomes for cancer diagnosis. Journal of Materials Chemistry B, 2020, 8, 2845-2855.	2.9	30
45	Orthogonal Adsorption of Carbon Dots and DNA on Nanoceria. Langmuir, 2020, 36, 2474-2481.	1.6	8
46	Precise therapeutic effect of self-assembling gold nanocluster–PTEN complexes on an orthotropic model of liver cancer. Journal of Cancer Research and Clinical Oncology, 2020, 146, 875-882.	1.2	7
47	Manganese oxide doped carbon dots for temperature-responsive biosensing and target bioimaging. Analytica Chimica Acta, 2020, 1104, 125-131.	2.6	22
48	Bio responsive self-assembly of Au-miRNAs for targeted cancer theranostics. EBioMedicine, 2020, 54, 102740.	2.7	15
49	Phosphorescent Ir (III) complexes as cellular staining agents for biomedical molecular imaging. Coordination Chemistry Reviews, 2020, 416, 213344.	9.5	44
50	Identification of candidate lncRNAs and circRNAs regulating WNT3/β-catenin signaling in essential hypertension. Aging, 2020, 12, 8261-8288.	1.4	10
51	<i>In situ</i> biosynthesized gold nanoclusters inhibiting cancer development <i>via</i> the PI3K–AKT signaling pathway. Journal of Materials Chemistry B, 2019, 7, 5336-5344.	2.9	15
52	Glutathione Induced Transformation of Partially Hollow Gold–Silver Nanocages for Cancer Diagnosis and Photothermal Therapy. Small, 2019, 15, 1902755.	5.2	23
53	Aggregation: Glutathione Induced Transformation of Partially Hollow Gold–Silver Nanocages for Cancer Diagnosis and Photothermal Therapy (Small 35/2019). Small, 2019, 15, 1970188.	5.2	0
54	Bivalent Metal lons Tethered Fluorescent Gold Nanoparticles as a Reusable Peroxidase Mimic Nanozyme. Journal of Analysis and Testing, 2019, 3, 269-276.	2.5	13

#	Article	IF	CITATIONS
55	Transition metal halide-doped, highly stable all-inorganic perovskite nanocrystals for fabrication of white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1690-1695.	2.7	22
56	Fluorescence light up detection of aluminium ion and imaging in live cells based on the aggregation-induced emission enhancement of thiolated gold nanoclusters. Talanta, 2019, 204, 548-554.	2.9	33
57	Chromium(III)-doped carbon dots: fluorometric detection of p-nitrophenol via inner filter effect quenching. Mikrochimica Acta, 2019, 186, 384.	2.5	32
58	Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. Journal of Colloid and Interface Science, 2019, 546, 1-10.	5.0	88
59	MOF-derived N-doped nanoporous carbon framework embedded with Pt NPs for sensitive monitoring of endogenous dopamine release. Journal of Electroanalytical Chemistry, 2019, 839, 247-255.	1.9	18
60	Aggregationâ€Induced Electrochemiluminescence by Metalâ€Binding Protein Responsive Hydrogel Scaffolds. Small, 2019, 15, e1901170.	5 . 2	45
61	A facile photoelectrochemical sensor for high sensitive ROS and AA detection based on graphitic carbon nitride nanosheets. Biosensors and Bioelectronics, 2018, 107, 54-61.	5.3	51
62	Adjusting the Linear Range of Au-MOF Fluorescent Probes for Real-Time Analyzing Intracellular GSH in Living Cells. ACS Applied Materials & Living Cells. ACS Applied Materials & Living Cells. ACS Applied Materials & Living Cells. 10, 12417-12423.	4.0	40
63	Silver-Assisted Thiolate Ligand Exchange Induced Photoluminescent Boost of Gold Nanoclusters for Selective Imaging of Intracellular Glutathione. Chemistry of Materials, 2018, 30, 1947-1955.	3.2	50
64	Design of dual metal ions/dual amino acids integrated photoluminescent logic gate by high-molecular weight protein-localized Au nanoclusters. Nano Research, 2018, 11, 311-322.	5.8	9
65	Enhancing the Transparency of Highly Electroactive BNCDâ€MEAs. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800211.	0.8	2
66	Mammalian cells: a unique scaffold for <i>in situ</i> biosynthesis of metallic nanomaterials and biomedical applications. Journal of Materials Chemistry B, 2018, 6, 6501-6514.	2.9	19
67	Label-free detection of Acinetobacter baumannii through the induced fluorescence quenching of thiolated AuAg nanoclusters. Sensors and Actuators B: Chemical, 2018, 277, 388-393.	4.0	33
68	Monitoring dynamic release of intracellular hydrogen peroxide through a microelectrode based enzymatic biosensor. Analytical and Bioanalytical Chemistry, 2018, 410, 4509-4517.	1.9	13
69	Mercaptopyrimidine-directed gold nanoclusters: a suitable fluorescent probe for intracellular glutathione imaging and selective cancer cell identification. Journal of Materials Chemistry B, 2018, 6, 3650-3654.	2.9	31
70	Mercaptopyrimidine-Conjugated Gold Nanoclusters as Nanoantibiotics for Combating Multidrug-Resistant Superbugs. Bioconjugate Chemistry, 2018, 29, 3094-3103.	1.8	80
71	A label-free aptamer-based cytosensor for specific cervical cancer HeLa cell recognition through a g-C ₃ N ₄ â€"AgI/ITO photoelectrode. Journal of Materials Chemistry B, 2018, 6, 5039-5049.	2.9	25
72	Real-Time Multimodal Bioimaging of Cancer Cells and Exosomes through Biosynthesized Iridium and Iron Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26056-26063.	4.0	60

#	Article	IF	Citations
73	Nano in nano: Biosynthesized gold and iron nanoclusters cargo neoplastic exosomes for cancer status biomarking. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2619-2631.	1.7	36
74	Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 740-754.	2.2	14
75	Recent advances in biomedical applications of fluorescent gold nanoclusters. Advances in Colloid and Interface Science, 2017, 242, 1-16.	7.0	180
76	Understanding the Photochemical Response of Zeolitic Imidazolate Framework-8 in the Sight of Framework, Uncoordinated 2-Methylimidazole and ZnxOy Clusters. Journal of Physical Chemistry C, 2017, 121, 12278-12284.	1.5	5
77	Red-emitted electrochemiluminescence by yellow fluorescent thioglycol/glutathione dual thiolate co-coated Au nanoclusters. Nanoscale, 2017, 9, 9792-9796.	2.8	28
78	Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn&Fe nanoclusters. Nano Research, 2017, 10, 2626-2632.	5.8	38
79	Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging. Biomacromolecules, 2017, 18, 1466-1472.	2.6	47
80	An intracellular temperature nanoprobe based on biosynthesized fluorescent copper nanoclusters. Journal of Materials Chemistry B, 2017, 5, 691-696.	2.9	35
81	In Situ Multimodality Imaging of Cancerous Cells Based on a Selective Performance of Fe ²⁺ â€Adsorbed Zeolitic Imidazolate Frameworkâ€8. Advanced Functional Materials, 2017, 27, 1603926.	7.8	46
82	In Vivo Biosynthesized Zinc and Iron Oxide Nanoclusters for High Spatiotemporal Dual-Modality Bioimaging of Alzheimer's Disease. Langmuir, 2017, 33, 9018-9024.	1.6	22
83	A Highly Potent Antibacterial Agent Targeting Methicillin-Resistant <i>Staphylococcus aureus </i> Based on Cobalt Bis (1,2-Dicarbollide) Alkoxy Derivative. Organometallics, 2017, 36, 3484-3490.	1.1	50
84	Genome-wide functional analysis on the molecular mechanism of specifically biosynthesized fluorescence Eu complex. Oncotarget, 2017, 8, 72082-72095.	0.8	3
85	A novel nonenzymatic biosensor for evaluation of oxidative stress based on nanocomposites of graphene blended with Cul. Analytica Chimica Acta, 2016, 933, 66-74.	2.6	12
86	Photoactivated TiO ₂ Nanowhiskers and Tetra Sulphonatophenyl Porphyrin Normoglycemic Effect on Diabetes Mellitus During Photodynamic Therapy. Journal of Nanoscience and Nanotechnology, 2016, 16, 12691-12694.	0.9	8
87	In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters. Biomaterials Science, 2016, 4, 1085-1091.	2.6	37
88	Titanium dioxide-tetra sulphonatophenyl porphyrin nanocomposites for target cellular bio-imaging and treatment of rheumatoid arthritis. Science China Chemistry, 2016, 59, 637-642.	4.2	26
89	Unexpected Thiols Triggering Photoluminescent Enhancement of Cytidine Stabilized Au Nanoclusters for Sensitive Assays of Glutathione Reductase and Its Inhibitors Screening. Analytical Chemistry, 2016, 88, 4766-4771.	3.2	36
90	Biosynthesized Gold Nanoclusters and Iron Complexes as Scaffolds for Multimodal Cancer Bioimaging. Small, 2016, 12, 6255-6265.	5.2	56

#	Article	IF	Citations
91	Synergy and translation of allogenic bone marrow stem cells after photodynamic treatment of rheumatoid arthritis with tetra sulfonatophenyl porphyrin and TiO2 nanowhiskers. Nano Research, 2016, 9, 3305-3321.	5.8	24
92	Nitrogenâ€Doped Carbon Quantum Dot Stabilized Magnetic Iron Oxide Nanoprobe for Fluorescence, Magnetic Resonance, and Computed Tomography Tripleâ€Modal In Vivo Bioimaging. Advanced Functional Materials, 2016, 26, 8694-8706.	7.8	113
93	In vivo target bio-imaging of cerebral ischemic stroke by real-time labeling of zinc. RSC Advances, 2016, 6, 110525-110534.	1.7	10
94	Rapid and accurate tumor-target bio-imaging through specific in vivo biosynthesis of a fluorescent europium complex. Biomaterials Science, 2016, 4, 652-660.	2.6	19
95	Fluorescent gold nanoclusters for in vivo target imaging of Alzheimer's disease. RSC Advances, 2016, 6, 30081-30088.	1.7	33
96	Protective effect of TiO2 nanowhiskers on Tetra Sulphonatophenyl Porphyrin (TSPP) complexes induced oxidative stress during photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2016, 13, 267-275.	1.3	21
97	Bio-imaging and Photodynamic Therapy with Tetra Sulphonatophenyl Porphyrin (TSPP)-TiO2 Nanowhiskers: New Approaches in Rheumatoid Arthritis Theranostics. Scientific Reports, 2015, 5, 11518.	1.6	65
98	Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Analytica Chimica Acta, 2015, 870, 1-7.	2.6	129
99	Green and facile synthesis of highly biocompatible carbon nanospheres and their pH-responsive delivery of doxorubicin to cancer cells. RSC Advances, 2015, 5, 17532-17540.	1.7	17
100	Facile synthesis of fluorescent Au/Ce nanoclusters for high-sensitive bioimaging. Journal of Nanobiotechnology, 2015, 13 , 8 .	4.2	19
101	In Situ Biosynthesis of Fluorescent Platinum Nanoclusters: Toward Self-Bioimaging-Guided Cancer Theranostics. ACS Applied Materials & Interfaces, 2015, 7, 18163-18169.	4.0	79
102	Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe ₃ O ₄ , and Platinum Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 18441-18449.	4.0	90
103	Thiols-Induced Rapid Photoluminescent Enhancement of Glutathione-Capped Gold Nanoparticles for Intracellular Thiols Imaging Applications. Analytical Chemistry, 2015, 87, 10230-10236.	3.2	56
104	One-step facile synthesis of fluorescent gold nanoclusters for rapid bio-imaging of cancer cells and small animals. RSC Advances, 2015, 5, 63821-63826.	1.7	29
105	In vivo rapid fluorescence imaging of Alzheimer's disease through accurate target bio-marking of zinc gluconate. Science Bulletin, 2015, 60, 1465-1467.	4.3	7
106	In vivo accurate target bio-marking of tumors through in situ biosynthesized fluorescent zinc nanoclusters. RSC Advances, 2015, 5, 74844-74849.	1.7	14
107	Influence of photoactivated tetra sulphonatophenyl porphyrin and TiO ₂ nanowhiskers on rheumatoid arthritis infected bone marrow stem cell proliferation in vitro and oxidative stress biomarkers in vivo. RSC Advances, 2015, 5, 107285-107292.	1.7	12
108	In-situ green synthesis of highly active GSH-capped Pt-Au-Ag-hybrid nanoclusters. Science China Chemistry, 2014, 57, 1532-1537.	4.2	13

7

#	Article	IF	Citations
109	One-step rapid synthesis of fluorescent platinum nanoclusters for cellular imaging and photothermal treatment. RSC Advances, 2014, 4, 40141.	1.7	32
110	Cytidine-Directed Rapid Synthesis of Water-Soluble and Highly Yellow Fluorescent Bimetallic AuAg Nanoclusters. Langmuir, 2014, 30, 10910-10917.	1.6	42
111	Simultaneous and multisite tumor rapid-target bioimaging through in vivo biosynthesis of fluorescent gold nanoclusters. RSC Advances, 2014, 4, 37790-37795.	1.7	26
112	Rapid and Ultrasensitive Electrochemical Detection of Multidrug-Resistant Bacteria Based on Nanostructured Gold Coated ITO Electrode. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11025-11031.	4.0	39
113	Highly Sensitive Graphene–Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H ₂ O ₂ Detection. Analytical Chemistry, 2014, 86, 9459-9465.	3.2	277
114	Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters. Nanoscale, 2014, 6, 10355-10362.	2.8	30
115	Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Scientific Reports, 2014, 4, 4384.	1.6	102
116	New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium(II)-arene complex. Science China Chemistry, 2013, 56, 595-603.	4.2	21
117	In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Scientific Reports, 2013, 3, 1157.	1.6	166
118	Control mechanism behind broad fluorescence from violet to orange in ZnO quantum dots. CrystEngComm, 2013, 15, 977-981.	1.3	39
119	Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials, 2013, 34, 902-911.	5.7	53
120	Layer-by-layer assembly of graphene, Au and poly(toluidine blue O) films sensor for evaluation of oxidative stress of tumor cells elicited by hydrogen peroxide. Biosensors and Bioelectronics, 2013, 41, 789-794.	5.3	98
121	Gambogic Acid Combined With CdTe QDs For Leukemia Cancer Cells Inhibition and Their Bio-Safety For Rat Brain. Blood, 2013, 122, 5028-5028.	0.6	5
122	New strategy of efficient inhibition of cancer cells by carborane carboxylic acid–CdTe nanocomposites. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 860-869.	1.7	28
123	Photoelectrocatalytic Oxidation of Glutathione Based on Porous TiO ₂ –Pt Nanowhiskers. Langmuir, 2012, 28, 12393-12399.	1.6	39
124	Bioactivity of the Conjugation of Green-Emitting CdTe Quantum Dots with a Carborane Complex. Journal of Nanoscience and Nanotechnology, 2011, 11, 3091-3099.	0.9	9
125	MULTIFUNCTIONAL HYDROXYCAMPTOTHECIN-CAPPED Fe3O4 NANOPARTICLES FOR INHIBITING OF CANCER DRUG RESISTANCE. Nano, 2011, 06, 589-595.	0.5	2
126	Potential-triggered adsorption of CdSe nanoparticles on glassy carbon electrode for generation of electrochemiluminescence. Electrochimica Acta, 2010, 56, 553-558.	2.6	10