
Julio Reboucas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008932/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential. Antioxidants and Redox Signaling, 2010, 13, 877-918.	2.5	460
2	Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radical Biology and Medicine, 2011, 51, 1035-1053.	1.3	122
3	Pure MnTBAP selectively scavenges peroxynitrite over superoxide: Comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radical Biology and Medicine, 2009, 46, 192-201.	1.3	119
4	Design and synthesis of manganese porphyrins with tailored lipophilicity: Investigation of redox properties and superoxide dismutase activity. Bioorganic and Medicinal Chemistry, 2007, 15, 7066-7086.	1.4	100
5	Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radical Biology and Medicine, 2010, 48, 1034-1043.	1.3	100
6	Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure–activity relationship as a watchdog mechanism in experimental therapeutics and biology. Journal of Biological Inorganic Chemistry, 2008, 13, 289-302.	1.1	89
7	Electrostatic Contribution in the Catalysis of O 2·_Dismutation by Superoxide Dismutase Mimics. Journal of Biological Chemistry, 2003, 278, 6831-6837.	1.6	73
8	A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radical Biology and Medicine, 2015, 86, 308-321.	1.3	71
9	Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia–telangiectasia cells. Free Radical Biology and Medicine, 2009, 47, 250-260.	1.3	65
10	Partially and fully Î ² -brominated Mn-porphyrins in P450 biomimetic systems: Effects of the degree of bromination on electrochemical and catalytic properties. Journal of Inorganic Biochemistry, 2005, 99, 1193-1204.	1.5	63
11	Lipophilicity of potent porphyrin-based antioxidants: Comparison of ortho and meta isomers of Mn(III) N-alkylpyridylporphyrins. Free Radical Biology and Medicine, 2009, 47, 72-78.	1.3	62
12	Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP5+, in plasma and major organs of B6C3F1 mice. Free Radical Biology and Medicine, 2008, 45, 943-949.	1.3	61
13	Differential Coordination Demands in Fe versus Mn Water-Soluble Cationic Metalloporphyrins Translate into Remarkably Different Aqueous Redox Chemistry and Biology. Inorganic Chemistry, 2013, 52, 5677-5691.	1.9	60
14	High Lipophilicity of meta Mn(III)N-Alkylpyridylporphyrin-Based Superoxide Dismutase Mimics Compensates for Their Lower Antioxidant Potency and Makes Them as Effective as Ortho Analogues in Protecting Superoxide Dismutase-DeficientEscherichia coli. Journal of Medicinal Chemistry, 2009, 52, 7868-7872.	2.9	59
15	Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Free Radical Biology and Medicine, 2015, 89, 1231-1247.	1.3	56
16	Quality of potent Mn porphyrin-based SOD mimics and peroxynitrite scavengers for pre-clinical mechanistic/therapeutic purposes. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 1046-1049.	1.4	55
17	Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: Protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radical Biology and Medicine, 2008, 45, 201-210.	1.3	55
18	Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: The effect of the degree of Î ² -bromination. Journal of Inorganic Biochemistry, 2008, 102, 1932-1941.	1.5	53

JULIO REBOUCAS

#	Article	IF	CITATIONS
19	Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radical Biology and Medicine, 2013, 58, 73-80.	1.3	51
20	Simple Biological Systems for Assessing the Activity of Superoxide Dismutase Mimics. Antioxidants and Redox Signaling, 2014, 20, 2416-2436.	2.5	48
21	Mn porphyrins immobilized on non-modified and chloropropyl-functionalized mesoporous silica SBA-15 as catalysts for cyclohexane oxidation. Applied Catalysis A: General, 2016, 526, 9-20.	2.2	47
22	SOD-like activity of Mn(II) β-octabromo-meso-tetrakis(N-methylpyridinium-3-yl)porphyrin equals that of the enzyme itself. Archives of Biochemistry and Biophysics, 2008, 477, 105-112.	1.4	46
23	Lipophilicity is a critical parameter that dominates the efficacy of metalloporphyrins in blocking the development of morphine antinociceptive tolerance through peroxynitrite-mediated pathways. Free Radical Biology and Medicine, 2009, 46, 212-219.	1.3	45
24	Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: The effect of charge distribution. Dalton Transactions, 2008, , 1233.	1.6	44
25	Rational Design of Superoxide Dismutase (SOD) Mimics: The Evaluation of the Therapeutic Potential of New Cationic Mn Porphyrins with Linear and Cyclic Substituents. Inorganic Chemistry, 2014, 53, 11467-11483.	1.9	43
26	The copper chelator ATN-224 induces peroxynitrite-dependent cell death in hematological malignancies. Free Radical Biology and Medicine, 2013, 60, 157-167.	1.3	42
27	Title is missing!. Transition Metal Chemistry, 2002, 27, 85-88.	0.7	39
28	Redox Potential Determines the Reaction Mechanism of HNO Donors with Mn and Fe Porphyrins: Defining the Better Traps. Inorganic Chemistry, 2014, 53, 7351-7360.	1.9	37
29	Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochemical and Photobiological Sciences, 2018, 17, 482-490.	1.6	37
30	Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(iii) N-methoxyalkylpyridylporphyrins. Dalton Transactions, 2011, 40, 4111.	1.6	33
31	Perhalogenated 2-pyridylporphyrin complexes: synthesis, self-coordinating aggregation properties, and catalytic studies. Journal of Porphyrins and Phthalocyanines, 2002, 06, 50-57.	0.4	31
32	Cyclohexane hydroxylation by iodosylbenzene and iodobenzene diacetate catalyzed by a new β-octahalogenated Mn–porphyrin complex: The effect of meso-3-pyridyl substituents. Journal of Molecular Catalysis A, 2007, 266, 274-283.	4.8	31
33	Bioavailability of metalloporphyrin-based SOD mimics is greatly influenced by a single charge residing on a Mn site. Free Radical Research, 2011, 45, 188-200.	1.5	30
34	Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers. Molecules, 2015, 20, 8893-8912.	1.7	30
35	Radiation-Mediated Tumor Growth Inhibition Is Significantly Enhanced with Redox-Active Compounds That Cycle with Ascorbate. Antioxidants and Redox Signaling, 2018, 29, 1196-1214.	2.5	30
36	52 Chemistry, Biology and Medical Effects of Water-Soluble Metalloporphyrins. Handbook of Porphyrin Science, 2011, , 291-393.	0.3	28

JULIO REBOUCAS

#	Article	IF	CITATIONS
37	Intracellular Targeting and Pharmacological Activity of the Superoxide Dismutase Mimics MnTE-2-PyP ⁵⁺ and MnTnHex-2-PyP ⁵⁺ Regulated by Their Porphyrin Ring Substituents. Inorganic Chemistry, 2013, 52, 4121-4123.	1.9	27
38	Mn porphyrin-based SOD mimic, MnTnHex-2-PyP ⁵⁺ , and non-SOD mimic, MnTBAP ^{3â^'} , suppressed rat spinal cord ischemia/reperfusion injury <i>via</i> NF-κB pathways. Free Radical Research, 2014, 48, 1426-1442.	1.5	27
39	Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP5+. Redox Biology, 2014, 2, 400-410.	3.9	27
40	Manganese porphyrins immobilized on magnetic SBA-15 mesoporous silica as selective and efficient catalysts for cyclic and linear alkane oxidation. Microporous and Mesoporous Materials, 2018, 265, 84-97.	2.2	27
41	Thiol, Disulfide, and Trisulfide Complexes of Ru Porphyrins: Potential Models for Iron–Sulfur Bonds in Heme Proteins. Journal of the American Chemical Society, 2012, 134, 3555-3570.	6.6	26
42	High selectivity toward cyclohexanol in oxidation of cyclohexane using manganese aminophenylporphyrins as catalysts. Applied Catalysis A: General, 2011, 400, 111-116.	2.2	25
43	Determination of residual manganese in Mn porphyrin-based superoxide dismutase (SOD) and peroxynitrite reductase mimics. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 1088-1091.	1.4	24
44	Carbamazepine oxidation catalyzed by manganese porphyrins: Effects of the Î ² -bromination of the macrocycle and the choice of oxidant. Applied Catalysis A: General, 2011, 408, 25-30.	2.2	24
45	Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100454.	5.6	23
46	Thermal stability of the prototypical Mn porphyrin-based superoxide dismutase mimic and potent oxidative-stress redox modulator Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride, MnTE-2-PyP5+. Journal of Pharmaceutical and Biomedical Analysis, 2013, 73, 29-34.	1.4	21
47	Effect of imidazole on biomimetic cyclohexane oxidation by first-, second-, and third-generation manganese porphyrins using PhIO and PhI(OAc)2 as oxidants. Applied Catalysis A: General, 2015, 491, 17-27.	2.2	21
48	Mn(<scp>iii</scp>)–porphyrin catalysts for the cycloaddition of CO ₂ with epoxides at atmospheric pressure: effects of Lewis acidity and ligand structure. New Journal of Chemistry, 2021, 45, 1934-1943.	1.4	20
49	Synthetic and Mechanistic Aspects of a New Method for Ruthenium-Metalation of Porphyrins and Schiff-Bases. Inorganic Chemistry, 2008, 47, 7894-7907.	1.9	19
50	Synthesis of new porphyrin/fullerene supramolecular assemblies: a spectroscopic and electrochemical investigation of their coordination equilibrium in solution. Tetrahedron, 2011, 67, 228-235.	1.0	18
51	Challenges encountered during development of Mn porphyrin-based, potent redox-active drug and superoxide dismutase mimic, MnTnBuOE-2-PyP5+, and its alkoxyalkyl analogues. Journal of Inorganic Biochemistry, 2017, 169, 50-60.	1.5	18
52	New Class of Verdoheme Analogues with Weakly Coordinating Anions:Â The Structure of (μ-Oxo)bis[(octaethyloxoporphinato)iron(III)] Hexafluorophosphate. Inorganic Chemistry, 2005, 44, 7762-7769.	1.9	15
53	Selective oxidation of lupeol by iodosylbenzene catalyzed by manganese porphyrins. Catalysis Communications, 2016, 86, 104-107.	1.6	13
54	Interactions of porphyrins and single walled carbon nanotubes: A fine duet. Synthetic Metals, 2014, 193, 64-70.	2.1	12

Julio Reboucas

#	Article	IF	CITATIONS
55	Molecular Recognition Using Ruthenium(II) Porphyrin Thiol Complexes as Probes. Inorganic Chemistry, 2013, 52, 1084-1098.	1.9	10
56	Efficient photodynamic inactivation of Leishmania parasites mediated by lipophilic water-soluble Zn(II) porphyrin ZnTnHex-2-PyP4+. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129897.	1.1	10
57	Robust Mn(iii) N-pyridylporphyrin-based biomimetic catalysts for hydrocarbon oxidations: heterogenization on non-functionalized silica gel versus chloropropyl-functionalized silica gel. Dalton Transactions, 2020, 49, 16404-16418.	1.6	9
58	Rapid conversion of cyclohexenone, cyclohexanone and cyclohexanol to ε-caprolactone by whole cells of <i>Geotrichum candidum</i> CCT 1205. Biocatalysis and Biotransformation, 2017, 35, 185-190.	1.1	8
59	Fe Porphyrin-Based SOD Mimic and Redox-Active Compound, (OH)FeTnHex-2-PyP4+, in a Rodent Ischemic Stroke (MCAO) Model: Efficacy and Pharmacokinetics as Compared to Its Mn Analogue, (H2O)MnTnHex-2-PyP5+. Antioxidants, 2020, 9, 467.	2.2	8
60	A simple, catalytic H2-hydrogenation method for the synthesis of fine chemicals; hydrogenation of protoporphyrin IX dimethyl ester. Tetrahedron Letters, 2006, 47, 5119-5122.	0.7	7
61	Measuring the electronic properties of single-walled carbon nanotubes with adsorbed porphyrins using optical transitions. Journal of Porphyrins and Phthalocyanines, 2010, 14, 885-890.	0.4	7
62	Nanometrological porphyrins. Nanotechnology, 2012, 23, 275504.	1.3	7
63	Unexpected Products of Benzylamine Oxidation Catalyzed by Manganese Porphyrins: Some Factors that Play a Critical Role for Imine Formation. ChemistrySelect, 2019, 4, 3275-3280.	0.7	7
64	Response to Rosenthal <i>et al.</i> . Antioxidants and Redox Signaling, 2011, 14, 1174-1176.	2.5	6
65	Comprehensive Pharmacokinetic Studies and Biodistribution of Two Cationic Mn Porphyrin-Based Catalysts, MnTE-2-PyP5+ and MnTnHex-2-PyP5+: Plasma and Organ Oral Availability, Mitochondrial, Cytosolic, Whole Brain, Hippocampus and Cortex Distribution. Free Radical Biology and Medicine, 2012, 53, S118.	1.3	6
66	Multiple magnetic characteristics in pure and Mn porphyrin-doped single-walled carbon nanotubes. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	6
67	Photoinactivation of Yeast and Biofilm Communities of Candida albicans Mediated by ZnTnHex-2-PyP4+ Porphyrin. Journal of Fungi (Basel, Switzerland), 2022, 8, 556.	1.5	6
68	Magnetic HMS silica as a Support to Immobilization of Catalysts Based on Cationic Manganese Porphyrins. ChemistrySelect, 2017, 2, 3703-3715.	0.7	5
69	Redox-Active Drug, MnTE-2-PyP ⁵⁺ , Prevents and Treats Cardiac Arrhythmias Preserving Heart Contractile Function. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	1.9	5
70	Ruthenium(II) complexes of meso-tetrakis(4-cyanophenyl)porphyrin. Inorganic Chemistry Communication, 2013, 30, 49-52.	1.8	3
71	Cytochrome P450-Like Biomimetic Oxidation Catalysts Based on Mn Porphyrins as Redox Modulators. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 213-243.	0.4	2
72	A porphyrinâ€based fluorescence method for zinc determination in commercial propolis extracts without sample pretreatment. Luminescence, 2017, 32, 1227-1232.	1.5	2

#	Article	IF	CITATIONS
73	Early and Late Administration of Antioxidant Mimetic MnTE-2yl-PyP5+ in Mitigation and Treatment of Radiation-induced Lung Damage. International Journal of Radiation Oncology Biology Physics, 2008, 72, S699.	0.4	1
74	Panorama da QuÃmica Inorgânica no Brasil revisitado: PerÃodo de 2002 a 2006. Quimica Nova, 0, , .	0.3	0
75	Thermal Stability Kinetics and Shelf Life Estimation of the Redox-Active Therapeutic and Mimic of Superoxide Dismutase Enzyme, Mn(III) meso-Tetrakis(N-ethylpyridinium-2-yl)porphyrin Chloride (MnTE-2-PyPCl5, BMX-010). Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	1.9	0