
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. Plant Cell, 2002, 14, 465-477.	3.1	1,127
2	Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 81-85.	9.4	852
3	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	2.3	689
4	Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the United States of America, 2002, 99, 9061-9066.	3.3	500
5	Soil Bacteria Confer Plant Salt Tolerance by Tissue-Specific Regulation of the Sodium Transporter <i>HKT1</i> . Molecular Plant-Microbe Interactions, 2008, 21, 737-744.	1.4	462
6	Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiology, 2004, 135, 1718-1737.	2.3	447
7	The Arabidopsis SOS5 Locus Encodes a Putative Cell Surface Adhesion Protein and Is Required for Normal Cell Expansion. Plant Cell, 2003, 15, 19-32.	3.1	396
8	Involvement of <i>Arabidopsis</i> HOS15 in histone deacetylation and cold tolerance. Proceedings of the United States of America, 2008, 105, 4945-4950.	3.3	293
9	Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 2013, 115, 1-22.	1.6	293
10	An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9873-9878.	3.3	236
11	Reactive oxygen species mediate Na ⁺ â€induced <i>SOS1</i> mRNA stability in Arabidopsis. Plant Journal, 2008, 53, 554-565.	2.8	214
12	Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology, 2002, 50, 543-550.	2.0	211
13	Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development. Plant Physiology, 2018, 176, 2082-2094.	2.3	198
14	The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance. Plant Cell, 2002, 14, 575-588.	3.1	191
15	Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12510-12515.	3.3	161
16	An Enhancer Mutant of Arabidopsis salt overly sensitive 3 Mediates both Ion Homeostasis and the Oxidative Stress Response. Molecular and Cellular Biology, 2007, 27, 5214-5224.	1.1	127
17	Salt Stress Affects Cortical Microtubule Organization and Helical Growth in Arabidopsis. Plant and Cell Physiology, 2006, 47, 1158-1168.	1.5	125
18	Regulated AtHKT1 Gene Expression by a Distal Enhancer Element and DNA Methylation in the Promoter Plays an Important Role in Salt Tolerance. Plant and Cell Physiology, 2011, 52, 149-161.	1.5	123

#	Article	IF	CITATIONS
19	Loss of salt tolerance during tomato domestication conferred by variation in a Na ⁺ /K ⁺ transporter. EMBO Journal, 2020, 39, e103256.	3.5	112
20	The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nature Communications, 2019, 10, 3822.	5.8	107
21	SOS4, A Pyridoxal Kinase Gene, Is Required for Root Hair Development in Arabidopsis. Plant Physiology, 2002, 129, 585-593.	2.3	102
22	Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant and Soil, 2016, 407, 217-230.	1.8	96
23	Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications, 2021, 12, 2456.	5.8	86
24	The Flowering Repressor SVP Confers Drought Resistance in Arabidopsis by Regulating Abscisic Acid Catabolism. Molecular Plant, 2018, 11, 1184-1197.	3.9	83
25	A stressâ€inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in <i>Arabidopsis</i> . Plant, Cell and Environment, 2010, 33, 1383-1392.	2.8	80
26	Overexpression of <i>PP2A 5</i> that encodes the catalytic subunit 5 of protein phosphatase 2A in <i>Arabidopsis</i> confers better root and shoot development under salt conditions. Plant, Cell and Environment, 2017, 40, 150-164.	2.8	66
27	Molecular Cloning and Different Expression of a Vacuolar Na ⁺ /H ⁺ antiporter gene in Suaeda salsa Under Salt Stress. Biologia Plantarum, 2004, 48, 219-225.	1.9	64
28	Cold stress activates disease resistance in <scp><i>Arabidopsis thaliana</i></scp> through a salicylic acid dependent pathway. Plant, Cell and Environment, 2019, 42, 2645-2663.	2.8	58
29	STCH4/REIL2 Confers Cold Stress Tolerance in Arabidopsis by Promoting rRNA Processing and CBF Protein Translation. Cell Reports, 2020, 30, 229-242.e5.	2.9	52
30	The Arabidopsis RNA Binding Protein with K Homology Motifs, SHINY1, Interacts with the C-terminal Domain Phosphatase-like 1 (CPL1) to Repress Stress-Inducible Gene Expression. PLoS Genetics, 2013, 9, e1003625.	1.5	51
31	<scp>HISTONE DEACETYLASE 6</scp> represses pathogen defence responses in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2017, 40, 2972-2986.	2.8	48
32	Two Chloroplast Proteins Suppress Drought Resistance by Affecting ROS Production in Guard Cells. Plant Physiology, 2016, 172, 2491-2503.	2.3	47
33	Natural variations in <i>SISOS1</i> contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnology Journal, 2021, 19, 20-22.	4.1	43
34	Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	38
35	The plasmaâ€membrane polyamine transporter PUT3 is regulated by the Na ⁺ /H ⁺ antiporter SOS1 and protein kinase SOS2. New Phytologist, 2020, 226, 785-797.	3.5	36
36	The Arabidopsis polyamine transporter <scp>LHR</scp> 1/ <scp>PUT</scp> 3 modulates heat responsive gene expression by enhancing <scp>mRNA</scp> stability. Plant Journal, 2016, 88, 1006-1021.	2.8	33

#	Article	IF	CITATIONS
37	Two Chloroplast Proteins Negatively Regulate Plant Drought Resistance Through Separate Pathways. Plant Physiology, 2020, 182, 1007-1021.	2.3	32
38	COP1 promotes ABAâ€induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. New Phytologist, 2021, 229, 2035-2049.	3.5	32
39	RNA-Seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo) Tj ETQq1	1 0.78431 0.6	4 rgBT /Oved
40	GmFLD, a soybean homolog of the autonomous pathway gene FLOWERING LOCUS D, promotes flowering in Arabidopsis thaliana. BMC Plant Biology, 2014, 14, 263.	1.6	22
41	Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Scientific Reports, 2017, 7, 9624.	1.6	22
42	Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis. PLoS Genetics, 2020, 16, e1008892.	1.5	22
43	Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genomics, 2020, 21, 40.	1.2	21
44	RNA Extraction. , 2006, 323, 345-348.		18
45	Dehydration-Induced DnaK2 Chaperone Is Involved in PSII Repair of a Desiccation-Tolerant Cyanobacterium. Plant Physiology, 2020, 182, 1991-2005.	2.3	18
46	Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis). International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1561-1566.	0.8	18
47	Nitrogen supply enhances zinc uptake and root-to-shoot translocation via up-regulating the expression of TaZIP3 and TaZIP7 in winter wheat (Triticum aestivum). Plant and Soil, 2019, 444, 501-517.	1.8	17
48	The DEAD-box RNA helicase SHI2 functions in repression of salt-inducible genes and regulation of cold-inducible gene splicing. Journal of Experimental Botany, 2020, 71, 1598-1613.	2.4	17
49	Detoxification function of the <scp><i>A</i></scp> <i>rabidopsis</i> sulphotransferase <scp>AtSOT</scp> 12 by sulphonation of xenobiotics. Plant, Cell and Environment, 2015, 38, 1673-1682.	2.8	16
50	Structure determination and activity manipulation of the turfgrass ABA receptor FePYR1. Scientific Reports, 2017, 7, 14022.	1.6	16
51	1Selenium supply alters the subcellular distribution and chemical forms of cadmium and the expression of transporter genes involved in cadmium uptake and translocation in winter wheat (Triticum aestivum). BMC Plant Biology, 2020, 20, 550.	1.6	16
52	<i>Pst</i> DC3000 infection alleviates subsequent freezing and heat injury to host plants via a salicylic acidâ€dependent pathway in <i>Arabidopsis</i> . Plant, Cell and Environment, 2020, 43, 801-817.	2.8	14
53	TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana. Plant Molecular Biology, 2020, 103, 511-525.	2.0	13
54	Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	12

#	Article	IF	CITATIONS
55	Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. Stress Biology, 2021, 1, 1.	1.5	11
56	Isolation and characterization of shs1, a sugar-hypersensitive and ABA-insensitive mutant with multiple stress responses. Plant Molecular Biology, 2007, 65, 295-309.	2.0	10
57	A nematode sterol C4α-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity. Journal of Lipid Research, 2020, 61, 192-204.	2.0	8
58	HISTONE DEACETYLASE 6 suppresses salicylic acid biosynthesis to repress autoimmunity. Plant Physiology, 2021, 187, 2592-2607.	2.3	8
59	Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. Planta, 2021, 254, 98.	1.6	7
60	Acetylproteomics analyses reveal critical features of lysine-Îμ-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. Stress Biology, 2022, 2, .	1.5	7
61	SWO1 modulates cell wall integrity under salt stress by interacting with importin É' in Arabidopsis. Stress Biology, 2021, 1, 1.	1.5	6
62	Integration Of Ca2+ In Plant Drought And Salt Stress Signal Transduction Pathways. , 2007, , 141-182.		5
63	Signaling control of SOS1 mRNA stability. Plant Signaling and Behavior, 2008, 3, 687-688.	1.2	5
64	The role of promoter cis-element, mRNA capping, and ROS in the repression and salt-inducible expression of AtSOT12 in Arabidopsis. Frontiers in Plant Science, 2015, 6, 974.	1.7	5
65	The Arabidopsis spliceosomal protein SmEb modulates ABA responses by maintaining proper alternative splicing of HAB1. Stress Biology, 2021, 1, 1.	1.5	4
66	Cellular polyamines modulate mRNA stability. Plant Signaling and Behavior, 2017, 12, e1323163.	1.2	2
67	Polyamine and Paraquat Transport Assays in Arabidopsis Seedling and Callus. Bio-protocol, 2017, 7, e2421.	0.2	1
68	SUMO E3 ligase SIZ1 negatively regulates arsenite resistance via depressing GSH biosynthesis in Arabidopsis. Stress Biology, 2022, 2, 1.	1.5	1