
Danmeng Shuai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere, 2019, 214, 462-479.	4.2	304
2	Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment. Environmental Science & Technology, 2016, 50, 12938-12948.	4.6	261
3	Progress and challenges in photocatalytic disinfection of waterborne Viruses: A review to fill current knowledge gaps. Chemical Engineering Journal, 2019, 355, 399-415.	6.6	207
4	Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: Virucidal performance and mechanism. Water Research, 2016, 106, 249-258.	5.3	145
5	Visible-light-driven photocatalytic disinfection of human adenovirus by a novel heterostructure of oxygen-doped graphitic carbon nitride and hydrothermal carbonation carbon. Applied Catalysis B: Environmental, 2019, 248, 11-21.	10.8	101
6	Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction. Environmental Science & Technology, 2012, 46, 2847-2855.	4.6	98
7	Tailored Synthesis of Photoactive TiO ₂ Nanofibers and Au/TiO ₂ Nanofiber Composites: Structure and Reactivity Optimization for Water Treatment Applications. Environmental Science & Technology, 2015, 49, 1654-1663.	4.6	98
8	Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2485-2494.	1.7	89
9	Elucidation of Nitrate Reduction Mechanisms on a Pdâ€In Bimetallic Catalyst using Isotope Labeled Nitrogen Species. ChemCatChem, 2013, 5, 313-321.	1.8	83
10	Structure Sensitivity Study of Waterborne Contaminant Hydrogenation Using Shape- and Size-Controlled Pd Nanoparticles. ACS Catalysis, 2013, 3, 453-463.	5.5	74
11	Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode. Chemosphere, 2007, 67, 1361-1367.	4.2	66
12	Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection. Chemosphere, 2018, 208, 84-92.	4.2	64
13	Graphitic Carbon Nitride Supported Ultrafine Pd and Pd–Cu Catalysts: Enhanced Reactivity, Selectivity, and Longevity for Nitrite and Nitrate Hydrogenation. ACS Applied Materials & Interfaces, 2017, 9, 27421-27426.	4.0	54
14	Development of palladium-resin composites for catalytic hydrodechlorination of 4-chlorophenol. Applied Catalysis B: Environmental, 2017, 205, 576-586.	10.8	53
15	Sustainable and scalable natural fiber welded palladium-indium catalysts for nitrate reduction. Applied Catalysis B: Environmental, 2018, 221, 290-301.	10.8	50
16	Mechanism of humic acid fouling in a photocatalytic membrane system. Journal of Membrane Science, 2018, 563, 531-540.	4.1	46
17	Looking at the overlooked hole oxidation: Photocatalytic transformation of organic contaminants on graphitic carbon nitride under visible light irradiation. Applied Catalysis B: Environmental, 2019, 240, 262-269.	10.8	41
18	Simultaneous coupling of photocatalytic and biological processes: A promising synergistic alternative for enhancing decontamination of recalcitrant compounds in water. Chemical Engineering Journal, 2021, 403, 126365.	6.6	39

DANMENG SHUAI

#	Article	IF	CITATIONS
19	Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents. Frontiers of Environmental Science and Engineering in China, 2009, 3, 171-177.	0.8	38
20	Effects of anodic oxidation of a substoichiometric titanium dioxide reactive electrochemical membrane on algal cell destabilization and lipid extraction. Bioresource Technology, 2016, 203, 112-117.	4.8	37
21	3D printed photoreactor with immobilized graphitic carbon nitride: A sustainable platform for solar water purification. Journal of Hazardous Materials, 2020, 399, 123097.	6.5	37
22	Continuous photocatalysis via photo-charging and dark-discharging for sustainable environmental remediation: Performance, mechanism, and influencing factors. Journal of Hazardous Materials, 2021, 420, 126607.	6.5	37
23	Fe-based single-atom catalysis for oxidizing contaminants of emerging concern by activating peroxides. Journal of Hazardous Materials, 2021, 418, 126294.	6.5	34
24	Enhancement of Oxyanion and Diatrizoate Reduction Kinetics Using Selected Azo Dyes on Pd-Based Catalysts. Environmental Science & Technology, 2010, 44, 1773-1779.	4.6	33
25	Catalytic reduction of 4-nitrophenol by palladium-resin composites. Applied Catalysis A: General, 2017, 543, 209-217.	2.2	33
26	Emerging investigators series: advances and challenges of graphitic carbon nitride as a visible-light-responsive photocatalyst for sustainable water purification. Environmental Science: Water Research and Technology, 2017, 3, 982-1001.	1.2	33
27	Enhancement of Nitrite Reduction Kinetics on Electrospun Pd-Carbon Nanomaterial Catalysts for Water Purification. ACS Applied Materials & Interfaces, 2016, 8, 17739-17744.	4.0	32
28	Development of Electrospun Nanofibrous Filters for Controlling Coronavirus Aerosols. Environmental Science and Technology Letters, 2021, 8, 545-550.	3.9	30
29	Lignocellulose Fiber- and Welded Fiber- Supports for Palladium-Based Catalytic Hydrogenation: A Natural Fiber Welding Application for Water Treatment. ACS Sustainable Chemistry and Engineering, 2016, 4, 5511-5522.	3.2	29
30	Photocatalytic graphitic carbon nitride-chitosan composites for pathogenic biofilm control under visible light irradiation. Journal of Hazardous Materials, 2021, 408, 124890.	6.5	26
31	Visible-Light-Responsive Photocatalyst of Graphitic Carbon Nitride for Pathogenic Biofilm Control. ACS Applied Materials & Interfaces, 2019, 11, 373-384.	4.0	25
32	Radical-Driven Decomposition of Graphitic Carbon Nitride Nanosheets: Light Exposure Matters. Environmental Science & Technology, 2021, 55, 12414-12423.	4.6	25
33	Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation. Science of the Total Environment, 2019, 682, 200-207.	3.9	20
34	Emerging Pathogenic Unit of Vesicle-Cloaked Murine Norovirus Clusters is Resistant to Environmental Stresses and UV ₂₅₄ Disinfection. Environmental Science & Technology, 2021, 55, 6197-6205.	4.6	17
35	Research highlights: antibiotic resistance genes: from wastewater into the environment. Environmental Science: Water Research and Technology, 2015, 1, 264-267.	1.2	15
36	Electrospun Nanofibrous Membranes for Controlling Airborne Viruses: Present Status, Standardization of Aerosol Filtration Tests, and Future Development. ACS Environmental Au, 2022, 2, 290-309.	3.3	12

DANMENG SHUAI

#	Article	IF	CITATIONS
37	Waterborne Human Pathogenic Viruses in Complex Microbial Communities: Environmental Implication on Virus Infectivity, Persistence, and Disinfection. Environmental Science & Technology, 2022, 56, 5381-5389.	4.6	12
38	Pd Nanoparticle Catalysts Supported on Nitrogen-Functionalized Activated Carbon for Oxyanion Hydrogenation and Water Purification. ACS Applied Nano Materials, 2018, 1, 6580-6586.	2.4	10
39	Photosensitized Electrospun Nanofibrous Filters for Capturing and Killing Airborne Coronaviruses under Visible Light Irradiation. Environmental Science & Technology, 2022, 56, 4295-4304.	4.6	10
40	Vesicle-Cloaked Rotavirus Clusters are Environmentally Persistent and Resistant to Free Chlorine Disinfection. Environmental Science & Technology, 2022, 56, 8475-8484.	4.6	8
41	Environmental application of chlorine-doped graphitic carbon nitride: Continuous solar-driven photocatalytic production of hydrogen peroxide. Journal of Hazardous Materials, 2022, 436, 129251.	6.5	8
42	Acquisition of time–frequency localized mechanical properties of biofilms and single cells with high spatial resolution. Nanoscale, 2019, 11, 8918-8929.	2.8	7
43	Research highlights: functions of the drinking water microbiome – from treatment to tap. Environmental Science: Water Research and Technology, 2016, 2, 245-249.	1.2	6
44	Research highlights: advances and challenges in developing mainstream anammox treatment. Environmental Science: Water Research and Technology, 2015, 1, 546-549.	1.2	5
45	Research highlights: visible light driven photocatalysis and photoluminescence and their applications in water treatment. Environmental Science: Water Research and Technology, 2016, 2, 13-16.	1.2	4
46	A New Geometric Method Based on Two-Dimensional Transmission Electron Microscopy for Analysis of Interior versus Exterior Pd Loading on Hollow Carbon Nanofibers. Journal of Physical Chemistry Letters, 2011, 2, 1082-1087.	2.1	3
47	Research highlights: applications of atomic force microscopy in natural and engineered water systems. Environmental Science: Water Research and Technology, 2016, 2, 415-420.	1.2	3
48	Antimicrobial Biocomposites Fiberâ€Welded with Lignocellulose Containing Silver Nanoparticles. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
49	Research highlights: under-recognized precursors and sources for disinfection byproduct formation. Environmental Science: Water Research and Technology, 2015, 1, 405-407.	1.2	2
50	Preferential leaching of indium metal during room temperature ionic liquid processing of Pd–In nanoparticle-biopolymer composites. Materials Chemistry and Physics, 2020, 249, 123179.	2.0	2