Chiara Gardin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of Graphene Oxide on Polycaprolactone PCL Surfaces: Antimicrobial Activity and Osteogenic Differentiation of Mesenchymal Stem Cell. Coatings, 2022, 12, 799.	1.2	4
2	Methods to isolate adipose tissue-derived stem cells. Methods in Cell Biology, 2022, , 215-228.	0.5	6
3	Electrospun PCL-Based Vascular Grafts: In Vitro Tests. Nanomaterials, 2021, 11, 751.	1.9	23
4	Elastomeric Cardiowrap Scaffolds Functionalized with Mesenchymal Stem Cells-Derived Exosomes Induce a Positive Modulation in the Inflammatory and Wound Healing Response of Mesenchymal Stem Cell and Macrophage. Biomedicines, 2021, 9, 824.	1.4	19
5	Biological Characterization of Human Autologous Pericardium Treated with the Ozaki Procedure for Aortic Valve Reconstruction. Journal of Clinical Medicine, 2021, 10, 3954.	1.0	6
6	Mineral-Doped Poly(L-lactide) Acid Scaffolds Enriched with Exosomes Improve Osteogenic Commitment of Human Adipose-Derived Mesenchymal Stem Cells. Nanomaterials, 2020, 10, 432.	1.9	52
7	Hyperbaric Oxygen Therapy Improves the Osteogenic and Vasculogenic Properties of Mesenchymal Stem Cells in the Presence of Inflammation In Vitro. International Journal of Molecular Sciences, 2020, 21, 1452.	1.8	41
8	Albumin-impregnated bone granules modulate the interactions between mesenchymal stem cells and monocytes under in vitro inflammatory conditions. Materials Science and Engineering C, 2020, 110, 110678.	3.8	15
9	An In Vivo Study in Rat Femurs of Bioactive Silicate Coatings on Titanium Dental Implants. Journal of Clinical Medicine, 2020, 9, 1290.	1.0	5
10	Stimulation of bone formation by monocyte-activator functionalized graphene oxide <i>in vivo</i> . Nanoscale, 2019, 11, 19408-19421.	2.8	32
11	Characterization of Dermal Stem Cells of Diabetic Patients. Cells, 2019, 8, 729.	1.8	19
12	Bovine pericardium membrane as new tool for mesenchymal stem cells commitment. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1805-1814.	1.3	7
13	Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. Materials, 2019, 12, 2036.	1.3	96
14	The Synergic Effect of Terpenoid and Steroidal Saponins Can Improve Bone Healing, by Promoting the Osteogenic Commitment of Adipose Mesenchymal Stem Cells: An In Vitro Study. Applied Sciences (Switzerland), 2019, 9, 3426.	1.3	1
15	Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Materials Science and Engineering C, 2019, 103, 109794.	3.8	50
16	Effects of novel antidepressant drugs on mesenchymal stem cell physiology. Biomedicine and Pharmacotherapy, 2019, 114, 108853.	2.5	9
17	Autologous Fat Transfer for Facial Augmentation: Surgery and Regeneration. Journal of Craniofacial Surgery, 2019, 30, 682-685.	0.3	15
18	Lineageâ€Specific Commitment of Stem Cells with Organic and Graphene Oxide–Functionalized Nanofibers. Advanced Functional Materials, 2019, 29, 1806694.	7.8	12

CHIARA GARDIN

#	Article	IF	CITATIONS
19	Autologous Fat Transfer for Facial Augmentation and Regeneration. Atlas of the Oral and Maxillofacial Surgery Clinics of North America, 2018, 26, 25-32.	0.4	6
20	Wollastonite-diopside-carbon composite foams from a silicone resin and inorganic fillers. Ceramics International, 2018, 44, 931-937.	2.3	12
21	Bioactive Sphene-Based Ceramic Coatings on cpTi Substrates for Dental Implants: An In Vitro Study. Materials, 2018, 11, 2234.	1.3	21
22	Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. International Journal of Molecular Sciences, 2018, 19, 4064.	1.8	24
23	Direct ink writing of silica-carbon-calcite composite scaffolds from a silicone resin and fillers. Journal of the European Ceramic Society, 2018, 38, 5200-5207.	2.8	17
24	Graphene-Based Nanomaterials for Tissue Engineering in the Dental Field. Nanomaterials, 2018, 8, 349.	1.9	101
25	Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study. Scientific Reports, 2018, 8, 5108.	1.6	44
26	Treatment by Therapeutic Magnetic Resonance (TMRâ,,¢) increases fibroblastic activity and keratinocyte differentiation in an <i>in vitro</i> model of 3D artificial skin. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1332-1342.	1.3	15
27	Osteo Growth Induction titanium surface treatment reduces ROS production of mesenchymal stem cells increasing their osteogenic commitment. Materials Science and Engineering C, 2017, 74, 389-398.	3.8	13
28	Bioactive Glass-Ceramic Scaffolds from Novel †Inorganic Gel Casting' and Sinter-Crystallization. Materials, 2017, 10, 171.	1.3	35
29	Release of VEGF from Dental Implant Improves Osteogenetic Process: Preliminary In Vitro Tests. Materials, 2017, 10, 1052.	1.3	23
30	Porcine Bone Scaffolds Adsorb Growth Factors Secreted by MSCs and Improve Bone Tissue Repair. Materials, 2017, 10, 1054.	1.3	12
31	The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells. Materials, 2017, 10, 1321.	1.3	11
32	Treatment of diabetic foot ulcers with Therapeutic Magnetic Resonance (TMR®) improves the quality of granulation tissue. European Journal of Histochemistry, 2017, 61, 2800.	0.6	15
33	Mesenchymal Stem Cells Increase Neo-Angiogenesis and Albumin Production in a Liver Tissue-Engineered Engraftment. International Journal of Molecular Sciences, 2016, 17, 374.	1.8	10
34	Stem Cells Commitment on Graphene-Based Scaffolds. Carbon Nanostructures, 2016, , 103-133.	0.1	0
35	Wollastonite-diopside glass-ceramic foams from supercritical carbon dioxide-assisted extrusion of a silicone resin and inorganic fillers. Journal of Non-Crystalline Solids, 2016, 443, 33-38.	1.5	9
36	Dental Stem Cells (DSCs): Classification and Properties. Pancreatic Islet Biology, 2016, , 1-25.	0.1	4

CHIARA GARDIN

#	Article	IF	CITATIONS
37	Non-Washed Resorbable Blasting Media (NWRBM) on Titanium Surfaces could Enhance Osteogenic Properties of MSCs through Increase of miRNA-196a And VCAM1. Stem Cell Reviews and Reports, 2016, 12, 543-552.	5.6	10
38	Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Life Sciences, 2016, 152, 44-51.	2.0	26
39	A Novel <i>In Vitro</i> Technique for Assessing Dental Implant Osseointegration. Tissue Engineering - Part C: Methods, 2016, 22, 132-141.	1.1	15
40	Persistence of CD34 Stem Marker in Human Lipoma: Searching for Cancer Stem Cells. International Journal of Biological Sciences, 2015, 11, 1127-1139.	2.6	17
41	Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis. BioMed Research International, 2015, 2015, 1-6.	0.9	25
42	Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO2 coating with magnesium impregnation. Materials Science and Engineering C, 2015, 52, 225-234.	3.8	22
43	Bioactive Wollastonite-Diopside Foams from Preceramic Polymers and Reactive Oxide Fillers. Materials, 2015, 8, 2480-2494.	1.3	36
44	A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue. International Journal of Molecular Sciences, 2015, 16, 4666-4681.	1.8	49
45	Tissue Engineering Strategies as Tools for Personalized Meningioma Treatment. Artificial Organs, 2015, 39, E114-26.	1.0	6
46	Ionized Ti Surfaces Increase Cell Adhesion Properties of Mesenchymal Stem Cells. Journal of Biomaterials and Tissue Engineering, 2015, 5, 417-425.	0.0	7
47	Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures. PLoS ONE, 2015, 10, e0132344.	1.1	81
48	Adipose-Derived Stem Cells as a Tool for Dental Implant Osseointegration: an Experimental Study in the Dog. International Journal of Molecular and Cellular Medicine, 2015, 4, 197-208.	1.1	16
49	Selective Augmentation of Stem Cell Populations in Structural Fat Grafts for Maxillofacial Surgery. PLoS ONE, 2014, 9, e110796.	1.1	16
50	Graphene based scaffolds effects on stem cells commitment. Journal of Translational Medicine, 2014, 12, 296.	1.8	104
51	Adult stem cells properties in terms of commitment, aging and biological safety of grit-blasted and Acid-etched ti dental implants surfaces. International Journal of Molecular and Cellular Medicine, 2014, 3, 225-36.	1.1	9
52	Nanostructured Surfaces of Dental Implants. International Journal of Molecular Sciences, 2013, 14, 1918-1931.	1.8	53
53	Nanotechnology to drive stem cell commitment. Nanomedicine, 2013, 8, 469-486.	1.7	29
54	Active Silver Nanoparticles for Wound Healing. International Journal of Molecular Sciences, 2013, 14, 4817-4840.	1.8	248

CHIARA GARDIN

#	Article	IF	CITATIONS
55	Silver Nanoparticles and Mitochondrial Interaction. International Journal of Dentistry, 2013, 2013, 1-8.	0.5	81
56	Adipose Tissue Regeneration: A State of the Art. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-12.	3.0	56
57	Silver Nanoparticles in Alveolar Bone Surgery Devices. Journal of Nanomaterials, 2012, 2012, 1-12.	1.5	56
58	In Vitro Concurrent Endothelial and Osteogenic Commitment of Adipose-Derived Stem Cells and Their Genomical Analyses Through Comparative Genomic Hybridization Array: Novel Strategies to Increase the Successful Engraftment of Tissue-Engineered Bone Grafts. Stem Cells and Development, 2012, 21, 767-777.	1.1	50
59	Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction. International Journal of Molecular Sciences, 2012, 13, 737-757.	1.8	99
60	Potential for Neural Differentiation of Mesenchymal Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2012, 129, 89-115.	0.6	38
61	Donor Age-Related Biological Properties of Human Dental Pulp Stem Cells Change in Nanostructured Scaffolds. PLoS ONE, 2012, 7, e49146.	1.1	64
62	Hyaluronan and Fibrin Biomaterial as Scaffolds for Neuronal Differentiation of Adult Stem Cells Derived from Adipose Tissue and Skin. International Journal of Molecular Sciences, 2011, 12, 6749-6764.	1.8	30
63	Biopolymers for Hard and Soft Engineered Tissues: Application in Odontoiatric and Plastic Surgery Field. Polymers, 2011, 3, 509-526.	2.0	43
64	Neural potential of adipose stem cells. Discovery Medicine, 2010, 10, 37-43.	0.5	37
65	A Class III PDZ Binding Motif in the Myotilin and FATZ Families Binds Enigma Family Proteins: a Common Link for Z-Disc Myopathies. Molecular and Cellular Biology, 2009, 29, 822-834.	1.1	87
66	Muscle Research and Gene Ontology: New standards for improved data integration. BMC Medical Genomics, 2009, 2, 6.	0.7	16