
## Stefano Fiorucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008136/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Linking liver metabolic and vascular disease via bile acid signaling. Trends in Molecular Medicine, 2022, 28, 51-66.                                                                                                                                   | 6.7  | 16        |
| 2  | Organoids as ex vivo culture system to investigate infection-host interaction in gastric pre-carcinogenesis Recent Advances in Inflammation & Allergy Drug Discovery, 2022, 16, .                                                                      | 0.8  | 4         |
| 3  | Discovery of Bile Acid Derivatives as Potent ACE2 Activators by Virtual Screening and Essential Dynamics. Journal of Chemical Information and Modeling, 2022, 62, 196-209.                                                                             | 5.4  | 15        |
| 4  | GLP-1 Mediates Regulation of Colonic ACE2 Expression by the Bile Acid Receptor GPBAR1 in Inflammation. Cells, 2022, 11, 1187.                                                                                                                          | 4.1  | 9         |
| 5  | Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling. FASEB Journal, 2022, 36, e22060.                                                                             | 0.5  | 9         |
| 6  | Discovery of a Potent and Orally Active Dual GPBAR1/CysLT1R Modulator for the Treatment of Metabolic Fatty Liver Disease. Frontiers in Pharmacology, 2022, 13, 858137.                                                                                 | 3.5  | 4         |
| 7  | Immunomodulatory functions of FXR. Molecular and Cellular Endocrinology, 2022, 551, 111650.                                                                                                                                                            | 3.2  | 22        |
| 8  | Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2021, 66, 674-693.                                                                                                                                                | 2.3  | 102       |
| 9  | Special FX: Harnessing the Farnesoid-X-Receptor to Control Bile Acid Synthesis. Digestive Diseases and Sciences, 2021, 66, 3668-3671.                                                                                                                  | 2.3  | 5         |
| 10 | Bile acids and their receptors in metabolic disorders. Progress in Lipid Research, 2021, 82, 101094.                                                                                                                                                   | 11.6 | 112       |
| 11 | The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opinion on Drug Discovery, 2021, 16, 1193-1208.                                                                                | 5.0  | 17        |
| 12 | Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular<br>Signatures With Prognostic Potential. Frontiers in Oncology, 2021, 11, 663771.                                                                   | 2.8  | 15        |
| 13 | Bile Acids Activated Receptors in Inflammatory Bowel Disease. Cells, 2021, 10, 1281.                                                                                                                                                                   | 4.1  | 39        |
| 14 | Inverse Virtual Screening for the rapid re-evaluation of the presumed biological safe profile of<br>natural products. The case of steviol from Stevia rebaudiana glycosides on farnesoid X receptor<br>(FXR). Bioorganic Chemistry, 2021, 111, 104897. | 4.1  | 3         |
| 15 | Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochemical Pharmacology, 2021, 188, 114564.                                                                                | 4.4  | 18        |
| 16 | Bile acid metabolism and bile acid receptor signaling in metabolic diseases and therapy. Liver Research, 2021, 5, 103-104.                                                                                                                             | 1.4  | 4         |
| 17 | Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty<br>liver disease. Liver Research, 2021, 5, 119-141.                                                                                                  | 1.4  | 15        |
| 18 | The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB<br>Journal, 2021, 35, e21271.                                                                                                                          | 0.5  | 15        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1<br>and G-Protein-Coupled Bile Acid Receptor 1. Journal of Medicinal Chemistry, 2021, 64, 16512-16529.                                               | 6.4 | 3         |
| 20 | Variability in Probiotic Formulations Revealed by Proteomics and Physico-chemistry Approach in Relation to the Gut Permeability. Probiotics and Antimicrobial Proteins, 2020, 12, 1193-1202.                                                         | 3.9 | 10        |
| 21 | Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Frontiers in Chemistry, 2020, 8, 572885.                                                  | 3.6 | 76        |
| 22 | Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders.<br>Current Opinion in Pharmacology, 2020, 53, 45-54.                                                                                                | 3.5 | 33        |
| 23 | Identification of cysteinyl-leukotriene-receptor 1 antagonists as ligands for the bile acid receptor GPBAR1. Biochemical Pharmacology, 2020, 177, 113987.                                                                                            | 4.4 | 5         |
| 24 | Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opinion on Investigational Drugs, 2020, 29, 623-632.                                                                                                           | 4.1 | 67        |
| 25 | The Bile Acid Receptor GPBAR1 Modulates CCL2/CCR2 Signaling at the Liver Sinusoidal/Macrophage<br>Interface and Reverses Acetaminophen-Induced Liver Toxicity. Journal of Immunology, 2020, 204,<br>2535-2551.                                       | 0.8 | 24        |
| 26 | GPBAR1 Activation by C6-Substituted Hyodeoxycholane Analogues Protect against Colitis. ACS<br>Medicinal Chemistry Letters, 2020, 11, 818-824.                                                                                                        | 2.8 | 8         |
| 27 | Discovery of a Novel Multi-Strains Probiotic Formulation with Improved Efficacy toward Intestinal<br>Inflammation. Nutrients, 2020, 12, 1945.                                                                                                        | 4.1 | 10        |
| 28 | Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of<br>acute liver injury in rodent models of cholestasis. Biochimica Et Biophysica Acta - Molecular and Cell<br>Biology of Lipids, 2020, 1865, 158733. | 2.4 | 22        |
| 29 | The Aryl Hydrocarbon Receptor (AhR) Mediates the Counter-Regulatory Effects of Pelargonidins in<br>Models of Inflammation and Metabolic Dysfunctions. Nutrients, 2019, 11, 1820.                                                                     | 4.1 | 25        |
| 30 | Ursodeoxycholic acid is a GPBAR1 agonist and resets liver/intestinal FXR signaling in a model of<br>diet-induced dysbiosis and NASH. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids,<br>2019, 1864, 1422-1437.                 | 2.4 | 37        |
| 31 | GPBAR1 Functions as Gatekeeper for Liver NKT Cells and provides Counterregulatory Signals in Mouse<br>Models of Immune-Mediated Hepatitis. Cellular and Molecular Gastroenterology and Hepatology, 2019,<br>8, 447-473.                              | 4.5 | 37        |
| 32 | Chenodeoxycholic Acid: An Update on Its Therapeutic Applications. Handbook of Experimental Pharmacology, 2019, 256, 265-282.                                                                                                                         | 1.8 | 41        |
| 33 | Mo2014 – Comparative Effects of Bar502, a Dual Fxr and Gpbar1 Agonist, Obeticholic Acid and<br>Ursodeoxycholic Acid in a Rodent Model of Nash. Gastroenterology, 2019, 156, S-925-S-926.                                                             | 1.3 | 1         |
| 34 | Tu1546 – Gpbar1 is a Modulator of Liver Immunity and Its Agonism Reverses Acetaminophen-Induced<br>Hepatotoxicity by Modulating Recruitment of Liver Macrophages. Gastroenterology, 2019, 156, S-1052.                                               | 1.3 | 0         |
| 35 | Sa1518 – Mechanism of Acute Liver Decompensation Caused by Obeticholic Acid in Cholestasis is Fxr<br>Dependent. Gastroenterology, 2019, 156, S-1231.                                                                                                 | 1.3 | 0         |
| 36 | Divergent Effectiveness of Multispecies Probiotic Preparations on Intestinal Microbiota Structure<br>Depends on Metabolic Properties. Nutrients, 2019, 11, 325.                                                                                      | 4.1 | 32        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Transcriptome Analysis of Dual FXR and GPBAR1 Agonism in Rodent Model of NASH Reveals Modulation of Lipid Droplets Formation. Nutrients, 2019, 11, 1132.                                                                   | 4.1 | 21        |
| 38 | Obeticholic Acid: An Update of Its Pharmacological Activities in Liver Disorders. Handbook of Experimental Pharmacology, 2019, 256, 283-295.                                                                               | 1.8 | 55        |
| 39 | The Pharmacology of Bile Acids and Their Receptors. Handbook of Experimental Pharmacology, 2019, 256, 3-18.                                                                                                                | 1.8 | 79        |
| 40 | Serum Bile Acid Levels Before and After Sleeve Gastrectomy and Their Correlation with Obesity-Related Comorbidities. Obesity Surgery, 2019, 29, 2517-2526.                                                                 | 2.1 | 17        |
| 41 | Introduction of Nonacidic Side Chains on 6-Ethylcholane Scaffolds in the Identification of Potent<br>Bile Acid Receptor Agonists with Improved Pharmacokinetic Properties. Molecules, 2019, 24, 1043.                      | 3.8 | 3         |
| 42 | Discovery of ((1,2,4-oxadiazol-5-yl)pyrrolidin-3-yl)ureidyl derivatives as selective non-steroidal agonists of the G-protein coupled bile acid receptor-1. Scientific Reports, 2019, 9, 2504.                              | 3.3 | 13        |
| 43 | Investigation around the Oxadiazole Core in the Discovery of a New Chemotype of Potent and Selective FXR Antagonists. ACS Medicinal Chemistry Letters, 2019, 10, 504-510.                                                  | 2.8 | 27        |
| 44 | Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. Chemosphere, 2019, 215, 870-880.                                                                                                      | 8.2 | 31        |
| 45 | Novel Isoxazole Derivatives with Potent FXR Agonistic Activity Prevent Acetaminophen-Induced Liver<br>Injury. ACS Medicinal Chemistry Letters, 2019, 10, 407-412.                                                          | 2.8 | 27        |
| 46 | Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis. FASEB Journal, 2019, 33, 2809-2822.                                                                      | 0.5 | 40        |
| 47 | Farnesoid X receptor modulators 2014-present: a patent review. Expert Opinion on Therapeutic Patents, 2018, 28, 351-364.                                                                                                   | 5.0 | 72        |
| 48 | Genetic and Pharmacological Dissection of the Role of Spleen Tyrosine Kinase (Syk) in Intestinal<br>Inflammation and Immune Dysfunction in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases,<br>2018, 24, 123-135. | 1.9 | 12        |
| 49 | Immunephenotype Predicts Response to Vedolizumab: Integrating Clinical and Biochemical Biomarkers<br>in the Treatment of Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2018, 63, 2168-2171.                | 2.3 | 2         |
| 50 | Disruption of TFGÎ <sup>2</sup> -SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacological Research, 2018, 131, 17-31.                | 7.1 | 25        |
| 51 | Amphiphilic polypeptides with prolonged enzymatic stability for the preparation of self-assembled nanobiomaterials. RSC Advances, 2018, 8, 34603-34613.                                                                    | 3.6 | 15        |
| 52 | Synthesis and characterization of well-defined poly(2-deoxy-2-methacrylamido-d-glucose) and its<br>biopotential block copolymers via RAFT and ROP polymerization. European Polymer Journal, 2018, 105,<br>26-37.           | 5.4 | 19        |
| 53 | 241 - GPBAR1 (TGR5) is a Modulator of Liver Immunity and Reverses Liver Inflammation in a Mouse<br>Models of Acute Hepatitis. Gastroenterology, 2018, 154, S-1078.                                                         | 1.3 | 0         |
| 54 | Tu1738 - The Aryl Hydrocarbon Receptor Mediates Anti-Inflammatory Activities of Natural and Synthetic<br>Pelargonidines in Mouse Models of Colitis. Gastroenterology, 2018, 154, S-1006.                                   | 1.3 | 0         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | 2 - GPBAR1 (TGR5) Agonism Reverses Endothelial Dysfunction and Liver Injury in a Dietetic Model of<br>Steatohepatitis. Gastroenterology, 2018, 154, S-1.                                                                       | 1.3 | 0         |
| 56 | Bile Acids Activated Receptors Regulate Innate Immunity. Frontiers in Immunology, 2018, 9, 1853.                                                                                                                               | 4.8 | 334       |
| 57 | Tu1748 - Probiotics Beyond Taxonomy: Evidence that Anti-inflammatory Properties of Live<br>Biotherapeutic Products Require Phenotypic Characterization. Gastroenterology, 2018, 154,<br>S-1008-S-1009.                         | 1.3 | 0         |
| 58 | Future trends in the treatment of non-alcoholic steatohepatitis. Pharmacological Research, 2018, 134, 289-298.                                                                                                                 | 7.1 | 54        |
| 59 | Su1053 - Bar704, a Potent and Selective Fxr Agonist Protects Against Intestinal Fibrosis.<br>Gastroenterology, 2018, 154, S-469.                                                                                               | 1.3 | 1         |
| 60 | Decoding the vasoregulatory activities of bile acid-activated receptors in systemic and portal circulation: role of gaseous mediators. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H21-H32.  | 3.2 | 38        |
| 61 | Decoding the role of the nuclear receptor SHP in regulating hepatic stellate cells and liver fibrogenesis. Scientific Reports, 2017, 7, 41055.                                                                                 | 3.3 | 12        |
| 62 | BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Scientific Reports, 2017, 7, 42801.                                                                | 3.3 | 94        |
| 63 | Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists.<br>Scientific Reports, 2017, 7, 43290.                                                                                | 3.3 | 30        |
| 64 | BAR130, a Hyodeoxycholic Acid Derivative as the First Example of Dual LXRα/GPBAR1 Agonist.<br>Gastroenterology, 2017, 152, S634.                                                                                               | 1.3 | 0         |
| 65 | Variability in Industrial Production Affects Probiotics Activity: Identification of Batches of Probiotic<br>VSL#3 that Increases Intestinal Permeability and Worsens Colitis in Rodents. Gastroenterology, 2017,<br>152, S969. | 1.3 | 2         |
| 66 | BAR501, A Selective Gpbar1 Agonist, Promotes Adipose Tissue Browning and Autophagy and Improves<br>Lipid Metabolism and Steato-Hepatitis in Mice Feed a High Fat Diet. Gastroenterology, 2017, 152, S683.                      | 1.3 | 0         |
| 67 | Discovery of Bar704, A Potent and Selective FXR Agonist, that Protects Against Liver Fibrosis.<br>Gastroenterology, 2017, 152, S300-S301.                                                                                      | 1.3 | Ο         |
| 68 | GPBAR1 (TGR5) Ligation Protects Against Colitis Development by Regulating Leukocyte Traffinking and Promoting a IL-10 Dependent Shift in the M1/M2 Phenotype. Gastroenterology, 2017, 152, S135.                               | 1.3 | 1         |
| 69 | The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis. Journal of Immunology, 2017, 199, 718-733.                                    | 0.8 | 198       |
| 70 | Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure<br>and reverses diet-induced steatohepatitis in mice. Scientific Reports, 2017, 7, 13689.                                   | 3.3 | 36        |
| 71 | Epoxide functionalization on cholane side chains in the identification of G-protein coupled bile acid receptor (GPBAR1) selective agonists. RSC Advances, 2017, 7, 32877-32885.                                                | 3.6 | 4         |
| 72 | Nanotraps with biomimetic surface as decoys for chemokines. Nanomedicine: Nanotechnology,<br>Biology, and Medicine, 2017, 13, 2575-2585.                                                                                       | 3.3 | 14        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Bisphenol AF: Does bisphenol AF glucuronide have endocrine activity?. Toxicology Letters, 2017, 280,<br>S111.                                                                                                                                               | 0.8 | 0         |
| 74 | Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a<br>New Lead in the Pharmacological Approach to Liver Diseases. Frontiers in Pharmacology, 2017, 8, 162.                                                | 3.5 | 23        |
| 75 | Metabolic Variability of a Multispecies Probiotic Preparation Impacts on the Anti-inflammatory<br>Activity. Frontiers in Pharmacology, 2017, 8, 505.                                                                                                        | 3.5 | 49        |
| 76 | Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World Journal of Gastroenterology, 2016, 22, 2219-2241.                                                                                                                        | 3.3 | 249       |
| 77 | Phallusiasterol C, A New Disulfated Steroid from the Mediterranean Tunicate Phallusia fumigata.<br>Marine Drugs, 2016, 14, 117.                                                                                                                             | 4.6 | 7         |
| 78 | Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists. Scientific Reports, 2016, 6, 19008.                                                                                        | 3.3 | 38        |
| 79 | Sa1587 A Comprehensive Analysis of Small Heterodimer Partner (SHP) Target Genes in Hepatic Stellate<br>Cells and the Discovery of a New Class of SHP Agonists That Reduces Liver Fibrosis. Gastroenterology,<br>2016, 150, S335.                            | 1.3 | 0         |
| 80 | 825 BAR502, a Dual FXR and GPBAR1 Agonist, Reverses Steatosis and Fibrosis in Rodent Model of NASH<br>By Modulating Authophagic Genes. Gastroenterology, 2016, 150, S173.                                                                                   | 1.3 | 1         |
| 81 | Mo1915 Genetic Ablation and Pharmacological Blockade of CCR5 by the anti-HIV Small Molecule<br>Inhibitor Maraviroc Inhibits Leukocyte Trafficking and Protects Against Mucosal Inflammation in<br>Murine Models Colitis. Gastroenterology, 2016, 150, S815. | 1.3 | 0         |
| 82 | Targeting the transsulfuration-H 2 S pathway by FXR and GPBAR1 ligands in the treatment of portal hypertension. Pharmacological Research, 2016, 111, 749-756.                                                                                               | 7.1 | 14        |
| 83 | Receptor-ligand interactions: Advanced biomedical applications. Materials Science and Engineering C, 2016, 68, 890-903.                                                                                                                                     | 7.3 | 46        |
| 84 | New brominated flame retardants and their metabolites as activators of the pregnane X receptor.<br>Toxicology Letters, 2016, 259, 116-123.                                                                                                                  | 0.8 | 12        |
| 85 | Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis. Scientific Reports, 2016, 6, 30802.                                                                                                     | 3.3 | 48        |
| 86 | Navigation in bile acid chemical space: discovery of novel FXR and GPBAR1 ligands. Scientific Reports, 2016, 6, 29320.                                                                                                                                      | 3.3 | 13        |
| 87 | Tu1828 GPBAR1(TGR5) Is Highly Expressed in Human Gastric Cancers and Its Activation by Selective or GPBAR1/FXR Dual Ligands Promotes Epithelial Mesenchymal Transition and Tumor Spreading. Gastroenterology, 2016, 150, S955.                              | 1.3 | 0         |
| 88 | Mo1916 BAR 501, a Novel GPBAR1 Ligand, Reverses Intestinal and Liver Inflammatory Models<br>Demonstrating That GPBAR1 Is an Essential Modulator of Innate Immunity in Entero-Hepatic Tissues.<br>Gastroenterology, 2016, 150, S815.                         | 1.3 | 0         |
| 89 | Investigation on bile acid receptor regulators. Discovery of cholanoic acid derivatives with dual<br>G-protein coupled bile acid receptor 1 (GPBAR1) antagonistic and farnesoid X receptor (FXR)<br>modulatory activity. Steroids, 2016, 105, 59-67.        | 1.8 | 16        |
| 90 | The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget, 2016, 7, 61021-61035.                                                                   | 1.8 | 44        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism. Scientific Reports, 2015, 5, 16605.                                                                              | 3.3 | 23        |
| 92  | The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma. Scientific Reports, 2015, 5, 15403.                                                                                                    | 3.3 | 6         |
| 93  | Inhibition of Chronic Ulcerative Colitis-associated Adenocarcinoma Development in Mice by VSL#3.<br>Inflammatory Bowel Diseases, 2015, 21, 1027-1037.                                                                                                  | 1.9 | 53        |
| 94  | Impaired Itching Perception in Murine Models of Cholestasis Is Supported by Dysregulation of GPBAR1 Signaling. PLoS ONE, 2015, 10, e0129866.                                                                                                           | 2.5 | 43        |
| 95  | Bile acid activated receptors are targets for regulation of integrity of gastrointestinal mucosa.<br>Journal of Gastroenterology, 2015, 50, 707-719.                                                                                                   | 5.1 | 23        |
| 96  | Farnesoid X receptor modulators (2011 – 2014): a patent review. Expert Opinion on Therapeutic Patents,<br>2015, 25, 885-896.                                                                                                                           | 5.0 | 23        |
| 97  | Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine<br>Homeostasis in Mice. Gastroenterology, 2015, 148, 1012-1023.e14.                                                                                              | 1.3 | 43        |
| 98  | Cystathionine γ-lyase, a H <sub>2</sub> S-generating enzyme, is a GPBAR1-regulated gene and contributes<br>to vasodilation caused by secondary bile acids. American Journal of Physiology - Heart and<br>Circulatory Physiology, 2015, 309, H114-H126. | 3.2 | 45        |
| 99  | Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends<br>in Molecular Medicine, 2015, 21, 702-714.                                                                                                    | 6.7 | 368       |
| 100 | Diethylstilbestrol-scaffold-based pregnane X receptor modulators. European Journal of Medicinal<br>Chemistry, 2015, 103, 551-562.                                                                                                                      | 5.5 | 6         |
| 101 | Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Medicinal Chemistry, 2015, 7, 1109-1135.                                                                                                            | 2.3 | 32        |
| 102 | Reversal of Endothelial Dysfunction by GPBAR1 Agonism in Portal Hypertension Involves a AKT/FOXOA1<br>Dependent Regulation of H2S Generation and Endothelin-1. PLoS ONE, 2015, 10, e0141082.                                                           | 2.5 | 51        |
| 103 | The HIV Matrix Protein p17 Promotes the Activation of Human Hepatic Stellate Cells through Interactions with CXCR2 and Syndecan-2. PLoS ONE, 2014, 9, e94798.                                                                                          | 2.5 | 8         |
| 104 | Solomonsterol A, a Marine Pregnane-X-Receptor Agonist, Attenuates Inflammation and Immune<br>Dysfunction in a Mouse Model of Arthritis. Marine Drugs, 2014, 12, 36-53.                                                                                 | 4.6 | 25        |
| 105 | Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP. PLoS ONE, 2014, 9, e106503.                                                                                    | 2.5 | 175       |
| 106 | Bazedoxifene-Scaffold-Based Mimetics of Solomonsterols A and B as Novel Pregnane X Receptor<br>Antagonists. Journal of Medicinal Chemistry, 2014, 57, 4819-4833.                                                                                       | 6.4 | 18        |
| 107 | Exploitation of Cholane Scaffold for the Discovery of Potent and Selective Farnesoid X Receptor<br>(FXR) and G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1) Ligands. Journal of Medicinal Chemistry,<br>2014, 57, 8477-8495.                         | 6.4 | 76        |
| 108 | Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives As<br>Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1). Journal of<br>Medicinal Chemistry, 2014, 57, 7687-7701.            | 6.4 | 62        |

| #   | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Design, Synthesis, and Biological Evaluation of Potent Dual Agonists of Nuclear and Membrane Bile<br>Acid Receptors. Journal of Medicinal Chemistry, 2014, 57, 937-954.                                                                                                  | 6.4 | 79        |
| 110 | Insights on pregnane-X-receptor modulation. Natural and semisynthetic steroids from Theonella marine sponges. European Journal of Medicinal Chemistry, 2014, 73, 126-134.                                                                                                | 5.5 | 14        |
| 111 | Incisterols, highly degraded marine sterols, are a new chemotype of PXR agonists. Steroids, 2014, 83, 80-85.                                                                                                                                                             | 1.8 | 14        |
| 112 | Marine and Semi-Synthetic Hydroxysteroids as New Scaffolds for Pregnane X Receptor Modulation.<br>Marine Drugs, 2014, 12, 3091-3115.                                                                                                                                     | 4.6 | 13        |
| 113 | Phallusiasterols A and B: Two New Sulfated Sterols from the Mediterranean Tunicate Phallusia<br>fumigata and Their Effects as Modulators of the PXR Receptor. Marine Drugs, 2014, 12, 2066-2078.                                                                         | 4.6 | 17        |
| 114 | Targeting FXR in cholestasis: hype or hope. Expert Opinion on Therapeutic Targets, 2014, 18, 1449-59.                                                                                                                                                                    | 3.4 | 37        |
| 115 | Dissociation of Intestinal and Hepatic Activities of FXR and LXRα Supports Metabolic Effects of Terminal<br>lleum Interposition in Rodents. Diabetes, 2013, 62, 3384-3393.                                                                                               | 0.6 | 51        |
| 116 | Isoswinholide B and swinholide K, potently cytotoxic dimeric macrolides from Theonella swinhoei.<br>Bioorganic and Medicinal Chemistry, 2013, 21, 5332-5338.                                                                                                             | 3.0 | 17        |
| 117 | Binding Mechanism of the Farnesoid X Receptor Marine Antagonist Suvanine Reveals a Strategy To<br>Forestall Drug Modulation on Nuclear Receptors. Design, Synthesis, and Biological Evaluation of<br>Novel Ligands. Journal of Medicinal Chemistry, 2013, 56, 4701-4717. | 6.4 | 49        |
| 118 | CCR5 Antagonism by Maraviroc Reduces the Potential for Gastric Cancer Cell Dissemination.<br>Translational Oncology, 2013, 6, 784-793.                                                                                                                                   | 3.7 | 47        |
| 119 | FXR mediates a chromatin looping in the GR promoter thus promoting the resolution of colitis in rodents. Pharmacological Research, 2013, 77, 1-10.                                                                                                                       | 7.1 | 14        |
| 120 | Epigenetic Modulation by Methionine Deficiency Attenuates the Potential for Gastric Cancer Cell<br>Dissemination. Journal of Gastrointestinal Surgery, 2013, 17, 39-49.                                                                                                  | 1.7 | 14        |
| 121 | Activation of the bile acid receptor <scp>GPBAR</scp> 1 protects against gastrointestinal injury caused by nonâ€steroidal antiâ€inflammatory drugs and aspirin in mice. British Journal of Pharmacology, 2013, 168, 225-237.                                             | 5.4 | 17        |
| 122 | Efficacy of the CCR5 Antagonist Maraviroc in Reducing Early, Ritonavir-Induced Atherogenesis and Advanced Plaque Progression in Mice. Circulation, 2013, 127, 2114-2124.                                                                                                 | 1.6 | 114       |
| 123 | Probiotics VSL#3 Protect against Development of Visceral Pain in Murine Model of Irritable Bowel<br>Syndrome. PLoS ONE, 2013, 8, e63893.                                                                                                                                 | 2.5 | 89        |
| 124 | New tridecapeptides of the theonellapeptolide family from the Indonesian sponge <i>Theonella swinhoei</i> . Beilstein Journal of Organic Chemistry, 2013, 9, 1643-1651.                                                                                                  | 2.2 | 10        |
| 125 | Oxygenated Polyketides from Plakinastrella mamillaris as a New Chemotype of PXR Agonists. Marine<br>Drugs, 2013, 11, 2314-2327.                                                                                                                                          | 4.6 | 41        |
| 126 | The Bile Acid Sensor FXR Is Required for Immune-Regulatory Activities of TLR-9 in Intestinal<br>Inflammation. PLoS ONE, 2013, 8, e54472.                                                                                                                                 | 2.5 | 82        |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF               | CITATIONS      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 127 | Preliminary Structure-Activity Relationship on Theonellasterol, a New Chemotype of FXR Antagonist,<br>from the Marine Sponge Theonella swinhoei. Marine Drugs, 2012, 10, 2448-2466.                                                                                                                        | 4.6              | 17             |
| 128 | Development of FXR, PXR and CAR Agonists and Antagonists for Treatment of Liver Disorders. Current<br>Topics in Medicinal Chemistry, 2012, 12, 605-624.                                                                                                                                                    | 2.1              | 36             |
| 129 | Editorial [Hot Topic :Current Advances In Therapeutic Applications of Nuclear Receptors (Guest) Tj ETQq1 1 0.78                                                                                                                                                                                            | 4314 rgB1<br>2.1 | [ /Qverlock 10 |
| 130 | Quantitative NMR-Derived Interproton Distances Combined with Quantum Mechanical Calculations of<br><sup>13</sup> C Chemical Shifts in the Stereochemical Determination of Conicasterol F, a Nuclear<br>Receptor Ligand from <i>Theonella swinhoei</i> . Journal of Organic Chemistry, 2012, 77, 1489-1496. | 3.2              | 81             |
| 131 | Marine sponge steroids as nuclear receptor ligands. Trends in Pharmacological Sciences, 2012, 33, 591-601.                                                                                                                                                                                                 | 8.7              | 47             |
| 132 | Modification in the side chain of solomonsterol A: discovery of cholestan disulfate as a potent pregnane-X-receptor agonist. Organic and Biomolecular Chemistry, 2012, 10, 6350.                                                                                                                           | 2.8              | 20             |
| 133 | Heat shock proteins as key biological targets of the marine natural cyclopeptide perthamide C.<br>Molecular BioSystems, 2012, 8, 1412.                                                                                                                                                                     | 2.9              | 10             |
| 134 | Conicasterol E, a Small Heterodimer Partner Sparing Farnesoid X Receptor Modulator Endowed with<br>a Pregnane X Receptor Agonistic Activity, from the Marine Sponge <i>Theonella swinhoei</i> . Journal<br>of Medicinal Chemistry, 2012, 55, 84-93.                                                        | 6.4              | 43             |
| 135 | 4-Methylenesterols from Theonella swinhoei sponge are natural pregnane-X-receptor agonists and farnesoid-X-receptor antagonists that modulate innate immunity. Steroids, 2012, 77, 484-495.                                                                                                                | 1.8              | 40             |
| 136 | Chalinulasterol, a Chlorinated Steroid Disulfate from the Caribbean Sponge Chalinula molitba.<br>Evaluation of Its Role as PXR Receptor Modulator. Marine Drugs, 2012, 10, 1383-1390.                                                                                                                      | 4.6              | 14             |
| 137 | Farnesoid X receptor: from medicinal chemistry to clinical applications. Future Medicinal Chemistry, 2012, 4, 877-891.                                                                                                                                                                                     | 2.3              | 42             |
| 138 | Plakilactones from the Marine Sponge <i>Plakinastrella mamillaris</i> . Discovery of a New Class of<br>Marine Ligands of Peroxisome Proliferator-Activated Receptor γ. Journal of Medicinal Chemistry, 2012,<br>55, 8303-8317.                                                                             | 6.4              | 47             |
| 139 | Discovery That Theonellasterol a Marine Sponge Sterol Is a Highly Selective FXR Antagonist That<br>Protects against Liver Injury in Cholestasis. PLoS ONE, 2012, 7, e30443.                                                                                                                                | 2.5              | 62             |
| 140 | Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition. FASEB Journal, 2012, 26, 3021-3031.                                                                                                                                                      | 0.5              | 48             |
| 141 | Ritonavir-induced lipoatrophy and dyslipidaemia is reversed by the anti-inflammatory drug<br>leflunomide in a PPAR-γ-dependent manner. Antiviral Therapy, 2012, 17, 669-678.                                                                                                                               | 1.0              | 16             |
| 142 | The First Total Synthesis of Solomonsterol B, a Marine Pregnane X Receptor Agonist. European<br>Journal of Organic Chemistry, 2012, 2012, 5187-5194.                                                                                                                                                       | 2.4              | 17             |
| 143 | The HIV Matrix Protein p17 Subverts Nuclear Receptors Expression and Induces a STAT1-Dependent Proinflammatory Phenotype in Monocytes. PLoS ONE, 2012, 7, e35924.                                                                                                                                          | 2.5              | 25             |
| 144 | VSL#3 Resets Insulin Signaling and Protects against NASH and Atherosclerosis in a Model of Genetic Dyslipidemia and Intestinal Inflammation. PLoS ONE, 2012, 7, e45425.                                                                                                                                    | 2.5              | 90             |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Gene expression changes induced by HIPEC in a murine model of gastric cancer. In Vivo, 2012, 26, 39-45.                                                                                                                                                         | 1.3 | 8         |
| 146 | Theonellasterols and Conicasterols fromTheonella swinhoei. Novel Marine Natural Ligands for<br>Human Nuclear Receptors. Journal of Medicinal Chemistry, 2011, 54, 3065-3075.                                                                                    | 6.4 | 61        |
| 147 | Total Synthesis and Pharmacological Characterization of Solomonsterol A, a Potent Marine<br>Pregnane-X-Receptor Agonist Endowed with Anti-Inflammatory Activity. Journal of Medicinal<br>Chemistry, 2011, 54, 4590-4599.                                        | 6.4 | 53        |
| 148 | Probiotics Modulate Intestinal Expression of Nuclear Receptor and Provide Counter-Regulatory Signals to Inflammation-Driven Adipose Tissue Activation. PLoS ONE, 2011, 6, e22978.                                                                               | 2.5 | 83        |
| 149 | Solomonsterols A and B from <i>Theonella swinhoei</i> . The First Example of C-24 and C-23 Sulfated Sterols from a Marine Source Endowed with a PXR Agonistic Activity. Journal of Medicinal Chemistry, 2011, 54, 401-405.                                      | 6.4 | 51        |
| 150 | Discovery of Sulfated Sterols from Marine Invertebrates as a New Class of Marine Natural<br>Antagonists of Farnesoid-X-Receptor. Journal of Medicinal Chemistry, 2011, 54, 1314-1320.                                                                           | 6.4 | 59        |
| 151 | Farnesoid X receptor suppresses constitutive androstane receptor activity at the multidrug<br>resistance protein-4 promoter. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809,<br>157-165.                                                | 1.9 | 59        |
| 152 | Towards new ligands of nuclear receptors. Discovery of malaitasterol A, an unique bis-secosterol from marine sponge Theonella swinhoei. Organic and Biomolecular Chemistry, 2011, 9, 4856.                                                                      | 2.8 | 35        |
| 153 | The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to Experimental Colitis. PLoS ONE, 2011, 6, e25637.                                                                                                         | 2.5 | 297       |
| 154 | Activation of the farnesoid-X receptor protects against gastrointestinal injury caused by non-steroidal anti-inflammatory drugs in mice. British Journal of Pharmacology, 2011, 164, 1929-1938.                                                                 | 5.4 | 32        |
| 155 | Inhibition of NF-κB by a PXR-dependent pathway mediates counter-regulatory activities of rifaximin on innate immunity in intestinal epithelial cells. European Journal of Pharmacology, 2011, 668, 317-324.                                                     | 3.5 | 97        |
| 156 | SHP-dependent and -independent induction of peroxisome proliferator-activated receptor-γ by the bile<br>acid sensor farnesoid X receptor counter-regulates the pro-inflammatory phenotype of liver<br>myofibroblasts. Inflammation Research, 2011, 60, 577-587. | 4.0 | 42        |
| 157 | Targeting Farnesoid-X-Receptor: From Medicinal Chemistry to Disease Treatment. Current Medicinal<br>Chemistry, 2010, 17, 139-159.                                                                                                                               | 2.4 | 59        |
| 158 | Hydrogen Sulphide Induces μ Opioid Receptor-Dependent Analgesia in a Rodent Model of Visceral Pain.<br>Molecular Pain, 2010, 6, 1744-8069-6-36.                                                                                                                 | 2.1 | 40        |
| 159 | Pregnane-X-receptor mediates the anti-inflammatory activities of rifaximin on detoxification pathways in intestinal epithelial cells. Biochemical Pharmacology, 2010, 80, 1700-1707.                                                                            | 4.4 | 86        |
| 160 | FXR an emerging therapeutic target for the treatment of atherosclerosis. Journal of Cellular and Molecular Medicine, 2010, 14, 79-92.                                                                                                                           | 3.6 | 66        |
| 161 | The Bile Acid Sensor FXR Protects against Dyslipidemia and Aortic Plaques Development Induced by the HIV Protease Inhibitor Ritonavir in Mice. PLoS ONE, 2010, 5, e13238.                                                                                       | 2.5 | 28        |
| 162 | FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. Journal of Lipid Research, 2010, 51, 771-784.                                                                             | 4.2 | 363       |

| #   | Article                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | The bile acid sensor FXR regulates insulin transcription and secretion. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2010, 1802, 363-372.                                                                                                                                                       | 3.8  | 153       |
| 164 | Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Progress in Lipid Research, 2010, 49, 171-185.                                                                                                                                                                              | 11.6 | 121       |
| 165 | The Bile Acid Receptor FXR Is a Modulator of Intestinal Innate Immunity. Journal of Immunology, 2009, 183, 6251-6261.                                                                                                                                                                                             | 0.8  | 485       |
| 166 | The Bile Acid Sensor Farnesoid X Receptor Is a Modulator of Liver Immunity in a Rodent Model of Acute<br>Hepatitis. Journal of Immunology, 2009, 183, 6657-6666.                                                                                                                                                  | 0.8  | 134       |
| 167 | Antiatherosclerotic effect of farnesoid X receptor. American Journal of Physiology - Heart and<br>Circulatory Physiology, 2009, 296, H272-H281.                                                                                                                                                                   | 3.2  | 166       |
| 168 | The plant sterol guggulsterone attenuates inflammation and immune dysfunction in murine models of inflammatory bowel disease. Biochemical Pharmacology, 2009, 78, 1214-1223.                                                                                                                                      | 4.4  | 74        |
| 169 | Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders.<br>Trends in Pharmacological Sciences, 2009, 30, 570-580.                                                                                                                                                  | 8.7  | 295       |
| 170 | A nitro-arginine derivative of trimebutine (NO2-Arg-Trim) attenuates pain induced by colorectal distension in conscious rats. Pharmacological Research, 2009, 59, 319-329.                                                                                                                                        | 7.1  | 14        |
| 171 | Farnesoid X receptor agonists in biliary tract disease. Current Opinion in Gastroenterology, 2009, 25, 252-259.                                                                                                                                                                                                   | 2.3  | 52        |
| 172 | Bile-acid-activated farnesoid X receptor regulates hydrogen sulfide production and hepatic microcirculation. World Journal of Gastroenterology, 2009, 15, 2097.                                                                                                                                                   | 3.3  | 54        |
| 173 | The methionine connection: Homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology, 2008, 47, 659-667.                                                                                                                                                           | 7.3  | 63        |
| 174 | Cardiac safety and antitumoral activity of a new nitric oxide derivative of pegylated epirubicin in mice.<br>Anti-Cancer Drugs, 2007, 18, 1081-1091.                                                                                                                                                              | 1.4  | 28        |
| 175 | Targeting farnesoid X receptor for liver and metabolic disorders. Trends in Molecular Medicine, 2007, 13, 298-309.                                                                                                                                                                                                | 6.7  | 179       |
| 176 | A Hydrogenâ€Sulfide Releasing Derivative of Mesalamine Exhibits Markedly Enhanced Antiâ€Inflammatory<br>Effects in Experimental Colitis. FASEB Journal, 2007, 21, A131.                                                                                                                                           | 0.5  | 0         |
| 177 | Back Door Modulation of the Farnesoid X Receptor:Â Design, Synthesis, and Biological Evaluation of a<br>Series of Side Chain Modified Chenodeoxycholic Acid Derivatives. Journal of Medicinal Chemistry,<br>2006, 49, 4208-4215.                                                                                  | 6.4  | 46        |
| 178 | The Emerging Roles of Hydrogen Sulfide in the Gastrointestinal Tract and Liver. Gastroenterology, 2006, 131, 259-271.                                                                                                                                                                                             | 1.3  | 343       |
| 179 | 5-Amino-2-hydroxybenzoic Acid 4-(5-Thioxo-5H-[1,2]dithiol-3yl)-phenyl Ester (ATB-429), a Hydrogen<br>Sulfide-Releasing Derivative of Mesalamine, Exerts Antinociceptive Effects in a Model of<br>Postinflammatory Hypersensitivity. Journal of Pharmacology and Experimental Therapeutics, 2006, 319,<br>447-458. | 2.5  | 130       |
| 180 | PPARs and other nuclear receptors in inflammation. Current Opinion in Pharmacology, 2006, 6, 421-427.                                                                                                                                                                                                             | 3.5  | 119       |

| #   | Article                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Unveiling hidden features of orphan nuclear receptors: The case of the small heterodimer partner<br>(SHP). Journal of Molecular Graphics and Modelling, 2006, 24, 362-372.                                                                                                                                        | 2.4 | 25        |
| 182 | 3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), physicochemical and physiological properties of a new<br>fluorinated bile acid that prevents 17α-ethynyl-estradiol-induced cholestasis in rats. Toxicology and<br>Applied Pharmacology, 2006, 214, 199-208.                                                    | 2.8 | 6         |
| 183 | Nitric oxide modulates proapoptotic and antiapoptotic properties of chemotherapy agents: the case of NOâ€pegylated epirubicin. FASEB Journal, 2006, 20, 765-767.                                                                                                                                                  | 0.5 | 47        |
| 184 | Evidence That Hydrogen Sulfide Exerts Antinociceptive Effects in the Gastrointestinal Tract by<br>Activating KATP Channels. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 325-335.                                                                                                            | 2.5 | 238       |
| 185 | Essential requirement for sphingosine kinase activity in eNOSâ€dependent NO release and vasorelaxation. FASEB Journal, 2006, 20, 340-342.                                                                                                                                                                         | 0.5 | 36        |
| 186 | Hydrogen sulfide is an endogenous modulator of leukocyteâ€nediated inflammation. FASEB Journal,<br>2006, 20, 2118-2120.                                                                                                                                                                                           | 0.5 | 765       |
| 187 | The Farnesoid X Receptor Promotes Adipocyte Differentiation and Regulates Adipose Cell Function in<br>Vivo. Molecular Pharmacology, 2006, 70, 1164-1173.                                                                                                                                                          | 2.3 | 145       |
| 188 | Disruption of an SP2/KLF6 Repression Complex by SHP Is Required for Farnesoid X Receptor-induced Endothelial Cell Migration. Journal of Biological Chemistry, 2006, 281, 39105-39113.                                                                                                                             | 3.4 | 69        |
| 189 | A role for proteinase-activated receptor-1 in inflammatory bowel diseases. Journal of Clinical<br>Investigation, 2006, 116, 2056-2056.                                                                                                                                                                            | 8.2 | 5         |
| 190 | Cross-Talk between Farnesoid-X-Receptor (FXR) and Peroxisome Proliferator-Activated Receptor γ<br>Contributes to the Antifibrotic Activity of FXR Ligands in Rodent Models of Liver Cirrhosis. Journal of<br>Pharmacology and Experimental Therapeutics, 2005, 315, 58-68.                                        | 2.5 | 169       |
| 191 | Proteinase-activated Receptor-1 is an Anti-Inflammatory Signal for Colitis Mediated by a Type 2 Immune<br>Response. Inflammatory Bowel Diseases, 2005, 11, 792-798.                                                                                                                                               | 1.9 | 56        |
| 192 | The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology, 2005, 42, 539-548.                                                                                                                                                               | 7.3 | 504       |
| 193 | Dual COX-Inhibitors: The Answer is NO?. Current Topics in Medicinal Chemistry, 2005, 5, 487-492.                                                                                                                                                                                                                  | 2.1 | 8         |
| 194 | A Farnesoid X Receptor-Small Heterodimer Partner Regulatory Cascade Modulates Tissue<br>Metalloproteinase Inhibitor-1 and Matrix Metalloprotease Expression in Hepatic Stellate Cells and<br>Promotes Resolution of Liver Fibrosis. Journal of Pharmacology and Experimental Therapeutics, 2005,<br>314, 584-595. | 2.5 | 176       |
| 195 | The Methyl Transferase PRMT1 Functions as Co-Activator of Farnesoid X Receptor (FXR)/9-cis Retinoid X Receptor and Regulates Transcription of FXR Responsive Genes. Molecular Pharmacology, 2005, 68, 551-558.                                                                                                    | 2.3 | 74        |
| 196 | Proteinase-Activated Receptor-2 Mediates Arterial Vasodilation in Diabetes. Arteriosclerosis,<br>Thrombosis, and Vascular Biology, 2005, 25, 2349-2354.                                                                                                                                                           | 2.4 | 36        |
| 197 | Role of FXR in Regulating Bile Acid Homeostasis and Relevance for Human Diseases. Current Drug<br>Targets Immune, Endocrine and Metabolic Disorders, 2005, 5, 289-303.                                                                                                                                            | 1.8 | 96        |
| 198 | Farnesoid X Receptor:Â From Structure to Potential Clinical Applications. Journal of Medicinal<br>Chemistry, 2005, 48, 5383-5403.                                                                                                                                                                                 | 6.4 | 125       |

| #   | Article                                                                                                                                                                                                                                                                                                         | IF              | CITATIONS          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 199 | Protective Effects of 6-Ethyl Chenodeoxycholic Acid, a Farnesoid X Receptor Ligand, in<br>Estrogen-Induced Cholestasis. Journal of Pharmacology and Experimental Therapeutics, 2005, 313,<br>604-612.                                                                                                           | 2.5             | 190                |
| 200 | Enhanced Anti-Inflammatory Potency of a Nitric Oxide-Releasing Derivative of Flunisolide: Role of<br>Nuclear Factor-κB. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 1096-1102.                                                                                                            | 2.5             | 18                 |
| 201 | Nitric Oxide (NO)-Releasing Naproxen (HCT-3012 [(S)-6-Methoxy-α-methyl-2-naphthaleneacetic Acid) Tj ETQq1<br>for Aspirin-Triggered Lipoxin, Prostaglandins, and NO in Gastric Protection. Journal of Pharmacology<br>and Experimental Therapeutics, 2004, 311, 1264-1271.                                       | 0.784314<br>2.5 | f rgBT /Over<br>26 |
| 202 | Aspirin-Triggered, Cyclooxygenase-2–Dependent Lipoxin Synthesis Modulates Vascular Tone.<br>Circulation, 2004, 110, 1320-1325.                                                                                                                                                                                  | 1.6             | 51                 |
| 203 | Cooperation between Aspirin-Triggered Lipoxin and Nitric Oxide (NO) Mediates Antiadhesive Properties of 2-(Acetyloxy)benzoic Acid 3-(Nitrooxymethyl)phenyl Ester (NCX-4016) (NO-Aspirin) on Neutrophil-Endothelial Cell Adherence. Journal of Pharmacology and Experimental Therapeutics, 2004. 309. 1174-1182. | 2.5             | 42                 |
| 204 | Diabetic Mouse Angiopathy Is Linked to Progressive Sympathetic Receptor Deletion Coupled to an<br>Enhanced Caveolin-1 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 721-726.                                                                                                        | 2.4             | 55                 |
| 205 | Nitric Oxide Regulates Immune Cell Bioenergetic: A Mechanism to Understand Immunomodulatory<br>Functions of Nitric Oxide-Releasing Anti-Inflammatory Drugs. Journal of Immunology, 2004, 173,<br>874-882.                                                                                                       | 0.8             | 33                 |
| 206 | A Â-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and<br>immune dysfunction. Proceedings of the National Academy of Sciences of the United States of<br>America, 2004, 101, 15736-15741.                                                                      | 7.1             | 148                |
| 207 | PAR1 antagonism protects against experimental liver fibrosis. Role of proteinase receptors in stellate cell activation. Hepatology, 2004, 39, 365-375.                                                                                                                                                          | 7.3             | 149                |
| 208 | The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology, 2004, 127, 1497-1512.                                                                                                                                                      | 1.3             | 406                |
| 209 | Co-Administration of Nitric Oxide-Aspirin (NCX-4016) and Aspirin Prevents Platelet and Monocyte<br>Activation and Protects Against Gastric Damage Induced by Aspirin in Humans. Journal of the American<br>College of Cardiology, 2004, 44, 635-641.                                                            | 2.8             | 45                 |
| 210 | Bile Acid Derivatives as Ligands of the Farnesoid X Receptor. Synthesis, Evaluation, and<br>Structureâ                                                                                                                                                                                                          | 6.4             | 166                |
| 211 | Treatment of Portal Hypertension with NCXâ€1000, a Liverâ€6pecific NO donor. A Review of Its Current<br>Status. Cardiovascular Drug Reviews, 2004, 22, 135-146.                                                                                                                                                 | 4.1             | 21                 |
| 212 | A role for proteinase-activated receptor–1 in inflammatory bowel diseases. Journal of Clinical<br>Investigation, 2004, 114, 1444-1456.                                                                                                                                                                          | 8.2             | 82                 |
| 213 | Treatment with all-trans retinoic acid plus tamoxifen and vitamin E in advanced hepatocellular carcinoma. Anticancer Research, 2004, 24, 1255-60.                                                                                                                                                               | 1.1             | 20                 |
| 214 | Proteinase-activated receptors (PARs) and immune function. Drug Development Research, 2003, 60, 65-70.                                                                                                                                                                                                          | 2.9             | 4                  |
| 215 | Relative contribution of acetylated cyclooxygenase (COX)â€2 and 5â€lipooxygenase (LOX) in regulating gastric mucosal integrity and adaptation to aspirin. FASEB Journal, 2003, 17, 1171-1173.                                                                                                                   | 0.5             | 63                 |
| 216 | Evidence that 5-lipoxygenase and acetylated cyclooxygenase 2-derived eicosanoids regulate<br>leukocyte-endothelial adherence in response to aspirin. British Journal of Pharmacology, 2003, 139,<br>1351-1359.                                                                                                  | 5.4             | 50                 |

| #   | Article                                                                                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | NCX-1000, a nitric oxide-releasing derivative of ursodeoxycholic acid, ameliorates portal hypertension<br>and lowers norepinephrine-induced intrahepatic resistance in the isolated and perfused rat liver.<br>Journal of Hepatology, 2003, 39, 932-939.                                                                                                        | 3.7  | 77        |
| 218 | Endothelial nitric oxide synthase: the Cinderella of inflammation?. Trends in Pharmacological Sciences, 2003, 24, 91-95.                                                                                                                                                                                                                                        | 8.7  | 167       |
| 219 | A magic bullet for mucosal protection…and aspirin is the trigger!. Trends in Pharmacological<br>Sciences, 2003, 24, 323-326.                                                                                                                                                                                                                                    | 8.7  | 58        |
| 220 | Interaction of a selective cyclooxygenase-2 inhibitor with aspirin and NO-releasing aspirin in the human gastric mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10937-10941.                                                                                                                               | 7.1  | 118       |
| 221 | Inhibition of Intestinal Bacterial Translocation with Rifaximin Modulates Lamina propria Monocytic<br>Cells Reactivity and Protects against Inflammation in a Rodent Model of Colitis. Digestion, 2002, 66,<br>246-256.                                                                                                                                         | 2.3  | 88        |
| 222 | NCXâ€4016, a nitric oxideâ€releasing aspirin, protects endothelial cells against apoptosis by modulating<br>mitochondrial function. FASEB Journal, 2002, 16, 1645-1647.                                                                                                                                                                                         | 0.5  | 41        |
| 223 | Nonlinear partial differential equations and applications: NCX-1015, a nitric-oxide derivative of prednisolone, enhances regulatory T cells in the lamina propria and protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice. Proceedings of the National Academy of Sciences of the United States of America. 2002. 99, 15770-15775.     | 7.1  | 72        |
| 224 | NCX-4016 (NO-Aspirin) Inhibits Lipopolysaccharide-Induced Tissue Factor Expression In Vivo.<br>Circulation, 2002, 106, 3120-3125.                                                                                                                                                                                                                               | 1.6  | 49        |
| 225 | 6α-Ethyl-Chenodeoxycholic Acid (6-ECDCA), a Potent and Selective FXR Agonist Endowed with<br>Anticholestatic Activity. Journal of Medicinal Chemistry, 2002, 45, 3569-3572.                                                                                                                                                                                     | 6.4  | 677       |
| 226 | Importance of Innate Immunity and Collagen Binding Integrin $\hat{I}\pm1\hat{I}^21$ in TNBS-Induced Colitis. Immunity, 2002, 17, 769-780.                                                                                                                                                                                                                       | 14.3 | 112       |
| 227 | Role of PAR2 in pain and inflammation. Trends in Pharmacological Sciences, 2002, 23, 153-155.                                                                                                                                                                                                                                                                   | 8.7  | 46        |
| 228 | Potential cardioprotective actions of no-releasing aspirin. Nature Reviews Drug Discovery, 2002, 1, 375-382.                                                                                                                                                                                                                                                    | 46.4 | 129       |
| 229 | Nitric Oxide???Releasing NSAIDs. Drug Safety, 2001, 24, 801-811.                                                                                                                                                                                                                                                                                                | 3.2  | 74        |
| 230 | Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? 1<br>1Abbreviations: NSAIDs, nonsteroidal anti-inflammatory drugs; COX, cyclooxygenase; LT, leukotriene;<br>5-LOX, 5-lipoxygenase; PG, prostaglandin; DFU,<br>5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsuphonyl)-phenyl-2(5H)-furanone; and DFP, diisopropyl | 4.4  | 264       |
| 231 | fluorophosphate Biochemical Pharmacology, 2001, 62, 1433-1438.<br>Salicylates Inhibit T Cell Adhesion on Endothelium Under Nonstatic Conditions: Induction of<br>L-Selectin Shedding by a Tyrosine Kinase-Dependent Mechanism. Journal of Immunology, 2001, 166,<br>832-840.                                                                                    | 0.8  | 18        |
| 232 | Galectin-1 exerts immunomodulatory and protective effects on concanavalin a-induced hepatitis in mice. Hepatology, 2000, 31, 399-406.                                                                                                                                                                                                                           | 7.3  | 148       |
| 233 | NO-naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis. British Journal of Pharmacology, 2000, 130, 1399-1405.                                                                                                                                                                                    | 5.4  | 80        |
| 234 | 21-NO-prednisolone is a novel nitric oxide-releasing derivative of prednisolone with enhanced anti-inflammatory properties. British Journal of Pharmacology, 2000, 131, 1345-1354.                                                                                                                                                                              | 5.4  | 56        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Anti-Very Late Antigen-1 Monoclonal Antibody Modulates the Development of Secondary Lesion and<br>T-Cell Response in Experimental Arthritis. Laboratory Investigation, 2000, 80, 73-80.                                                               | 3.7 | 33        |
| 236 | IL-1Î <sup>2</sup> Converting Enzyme Is a Target for Nitric Oxide-Releasing Aspirin: New Insights in the<br>Antiinflammatory Mechanism of Nitric Oxide-Releasing Nonsteroidal Antiinflammatory Drugs. Journal<br>of Immunology, 2000, 165, 5245-5254. | 0.8 | 101       |
| 237 | Involvement of CD44 variant isoforms in hyaluronate adhesion by human activated T cells. European<br>Journal of Immunology, 1995, 25, 2932-2939.                                                                                                      | 2.9 | 67        |
| 238 | Severe gastric mucosal damage induced by NSAIDs in healthy subjects is associated withHelicobacter pylori infection and high levels of serum pepsinogens. Digestive Diseases and Sciences, 1995, 40, 2074-2080.                                       | 2.3 | 55        |
| 239 | l-Arginine/nitric oxide pathway modulates gastric motility and gallbladder emptying induced by erythromycin and liquid meal in humans. Digestive Diseases and Sciences, 1995, 40, 1365-1371.                                                          | 2.3 | 18        |
| 240 | Abscess formation in hepatocellular carcinoma: Complications of percutaneous ultrasound-guided ethanol injection. Journal of Clinical Ultrasound, 1993, 21, 531-533.                                                                                  | 0.8 | 14        |
| 241 | 5-Hydroxytryptamine 3-receptor antagonist modulates gallbladder emptying and motilin release induced by erythromycin. Digestive Diseases and Sciences, 1993, 38, 2236-2240.                                                                           | 2.3 | 17        |
| 242 | Effect of erythromycin on gallbladder emptying in diabetic patients with and without autonomic neuropathy and high levels of motilin. Digestive Diseases and Sciences, 1992, 37, 1671-1677.                                                           | 2.3 | 31        |
| 243 | Erythromycin stimulates gallbladder emptying and motilin release by atropine-sensitive pathways.<br>Digestive Diseases and Sciences, 1992, 37, 1678-1684.                                                                                             | 2.3 | 39        |
| 244 | Placebo-controlled comparison of piroxicam-?-cyclodextrin, piroxicam, and indomethacin on gastric potential difference and mucosal injury in humans. Digestive Diseases and Sciences, 1992, 37, 1825-1832.                                            | 2.3 | 16        |
| 245 | Control of gastric pH with ranitidine in critically III patients. Digestive Diseases and Sciences, 1991, 36, 583-587.                                                                                                                                 | 2.3 | 13        |
| 246 | Neurohumoral control of gallbladder motility in healthy subjects and diabetic patients with or without autonomic neuropathy. Digestive Diseases and Sciences, 1990, 35, 1089-1097.                                                                    | 2.3 | 41        |
| 247 | Duodenal osmolality drives gallbladder emptying in humans. Digestive Diseases and Sciences, 1990, 35, 698-704.                                                                                                                                        | 2.3 | 10        |
| 248 | Type III procollagen peptide and PZ-peptidase serum levels in pre-cirrhotic liver diseases. Clinica<br>Chimica Acta, 1985, 148, 87-95.                                                                                                                | 1.1 | 16        |