Francis D'Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9007886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2004, 5, 79-104.	5.6	500
2	Supramolecular donor–acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications. Chemical Communications, 2009, , 4913.	2.2	473
3	Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines. Coordination Chemistry Reviews, 2005, 249, 1410-1422.	9.5	400
4	Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Analytical and Bioanalytical Chemistry, 2012, 402, 3177-3204.	1.9	372
5	Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes. Electroanalysis, 2003, 15, 753-772.	1.5	357
6	Photosensitized electron transfer processes of nanocarbons applicable to solar cells. Chemical Society Reviews, 2012, 41, 86-96.	18.7	357
7	Chemical functionalization and characterization of graphene-based materials. Chemical Society Reviews, 2017, 46, 4464-4500.	18.7	356
8	Energy Transfer Followed by Electron Transfer in a Supramolecular Triad Composed of Boron Dipyrrin, Zinc Porphyrin, and Fullerene:  A Model for the Photosynthetic Antenna-Reaction Center Complex. Journal of the American Chemical Society, 2004, 126, 7898-7907.	6.6	310
9	Distinguishing Homogeneous from Heterogeneous Catalysis in Electrode-Driven Water Oxidation with Molecular Iridium Complexes. Journal of the American Chemical Society, 2011, 133, 10473-10481.	6.6	293
10	Spectroscopic, Electrochemical, and Photochemical Studies of Self-Assembled via Axial Coordination Zinc Porphyrinâ^'Fulleropyrrolidine Dyads. Journal of Physical Chemistry A, 2002, 106, 3243-3252.	1.1	238
11	Photosynthetic Antenna–Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers. ChemPhysChem, 2014, 15, 30-47.	1.0	222
12	Probing the Donorâ `Acceptor Proximity on the Physicochemical Properties of Porphyrinâ `Fullerene Dyads:A "Tail-On―and "Tail-Off―Binding Approach. Journal of the American Chemical Society, 2001, 12 5277-5284.	3,6.6	193
13	Corroleâ^'Fullerene Dyads: Formation of Long-Lived Charge-Separated States in Nonpolar Solvents. Journal of the American Chemical Society, 2008, 130, 14263-14272.	6.6	185
14	Photosynthetic Reaction Center Mimicry: Low Reorganization Energy Driven Charge Stabilization in Self-Assembled Cofacial Zinc Phthalocyanine Dimerâ^'Fullerene Conjugate. Journal of the American Chemical Society, 2009, 131, 8787-8797.	6.6	177
15	Design and photochemical study of supramolecular donor–acceptor systems assembled via metal–ligand axial coordination. Coordination Chemistry Reviews, 2016, 322, 104-141.	9.5	172
16	Donorâ^'Acceptor Nanohybrids of Zinc Naphthalocyanine or Zinc Porphyrin Noncovalently Linked to Single-Wall Carbon Nanotubes for Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 6947-6955.	1.5	168
17	Supramolecular electron transfer by anion binding. Chemical Communications, 2012, 48, 9801.	2.2	159
18	Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. Journal of Materials Chemistry, 2007, 17, 4160.	6.7	153

#	Article	IF	CITATIONS
19	Self-assembled tetrapyrrole–fullerene and tetrapyrrole–carbon nanotube donor–acceptor hybrids for light induced electron transfer applications. Journal of Materials Chemistry, 2008, 18, 1440.	6.7	153
20	Control over Photoinduced Energy and Electron Transfer in Supramolecular Polyads of Covalently linked azaBODIPY-Bisporphyrin â€~Molecular Clip' Hosting Fullerene. Journal of the American Chemical Society, 2012, 134, 654-664.	6.6	148
21	Electrochemical and spectroelectrochemical behavior of cobalt(III), cobalt(II), and cobalt(I) complexes of meso-tetraphenylporphyrinate bearing bromides on the .betapyrrole positions. Inorganic Chemistry, 1993, 32, 4042-4048.	1.9	144
22	Supramolecular Carbon Nanotube-Fullerene Donorâ [°] Acceptor Hybrids for Photoinduced Electron Transfer. Journal of the American Chemical Society, 2007, 129, 15865-15871.	6.6	144
23	SWNT-Based Supramolecular Nanoarchitectures with Photosensitizing Donor and Acceptor Molecules. Journal of Physical Chemistry Letters, 2010, 1, 2586-2593.	2.1	141
24	Porphyrin-Sensitized Solar Cells: Effect of Carboxyl Anchor Group Orientation on the Cell Performance. ACS Applied Materials & amp; Interfaces, 2013, 5, 5314-5323.	4.0	136
25	Self-Assembled Porphyrinâ^'C60and Porphyceneâ^'C60Complexes via Metal Axial Coordination. Inorganic Chemistry, 1999, 38, 2157-2160.	1.9	134
26	Selective electrosynthesis of dimethylfullerene [(CH3)2C60]: a novel method for the controlled functionalization of fullerenes. Journal of the American Chemical Society, 1993, 115, 8505-8506.	6.6	131
27	Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosensors and Bioelectronics, 2015, 74, 960-966.	5.3	129
28	Phenothiazine-Sensitized Organic Solar Cells: Effect of Dye Anchor Group Positioning on the Cell Performance. ACS Applied Materials & Interfaces, 2012, 4, 5813-5820.	4.0	126
29	Surfaceâ€Immobilized Singleâ€Site Iridium Complexes for Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2012, 51, 9601-9605.	7.2	126
30	Studies on Intra-Supramolecular and Intermolecular Electron-Transfer Processes between Zinc Naphthalocyanine and Imidazole-Appended Fullerene. ChemPhysChem, 2003, 4, 474-481.	1.0	121
31	Selective Histamine Piezoelectric Chemosensor Using a Recognition Film of the Molecularly Imprinted Polymer of Bis(bithiophene) Derivatives. Analytical Chemistry, 2009, 81, 2633-2643.	3.2	120
32	Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15651-15656.	3.3	118
33	Functionalized polythiophenes: Recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Progress in Polymer Science, 2015, 47, 1-25.	11.8	118
34	Studies on Covalently Linked Porphyrinâ^'C60Dyads:Â Stabilization of Charge-Separated States by Axial Coordination. Journal of Physical Chemistry A, 2002, 106, 12393-12404.	1.1	114
35	Recent Advances in Photoinduced Electron Transfer Processes of Fullerene-Based Molecular Assemblies and Nanocomposites. Molecules, 2012, 17, 5816-5835.	1.7	112
36	Melamine Acoustic Chemosensor Based on Molecularly Imprinted Polymer Film. Analytical Chemistry, 2009, 81, 10061-10070.	3.2	110

#	Article	IF	CITATIONS
37	Supramolecular Solar Cells: Surface Modification of Nanocrytalline TiO ₂ with Coordinating Ligands To Immobilize Sensitizers and Dyads via Metalâ^'Ligand Coordination for Enhanced Photocurrent Generation. Journal of the American Chemical Society, 2009, 131, 14646-14647.	6.6	109
38	Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues. Journal of the American Chemical Society, 2010, 132, 8158-8164.	6.6	109
39	Supramolecular Tetrad of Subphthalocyanine–Triphenylamine–Zinc Porphyrin Coordinated to Fullerene as an "Antennaâ€Reactionâ€Centerâ€Mimic: Formation of a Longâ€Lived Chargeâ€Separated State Nonpolar Solvent. Chemistry - A European Journal, 2010, 16, 6193-6202.	i n. 7	104
40	Electron Transfer Studies of High Potential Zinc Porphyrin–Fullerene Supramolecular Dyads. Journal of Physical Chemistry C, 2014, 118, 3994-4006.	1.5	103
41	Electronic Interactions and Photoinduced Electron Transfer in Covalently Linked Porphyrinâ^'C60(pyridine) Diads and Supramolecular Triads Formed by Self-Assembling the Diads and Zinc Porphyrin. Journal of Physical Chemistry B, 2002, 106, 4952-4962.	1.2	97
42	Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse. TrAC - Trends in Analytical Chemistry, 2012, 34, 59-77.	5.8	95
43	Anion-Complexation-Induced Stabilization of Charge Separation. Journal of the American Chemical Society, 2009, 131, 16138-16146.	6.6	93
44	Photosynthetic Antennaâ^'Reaction Center Mimicry: Sequential Energy- and Electron Transfer in a Self-assembled Supramolecular Triad Composed of Boron Dipyrrin, Zinc Porphyrin and Fullerene. Journal of Physical Chemistry A, 2009, 113, 8478-8489.	1.1	93
45	Nearâ€IR Excitation Transfer and Electron Transfer in a BF ₂ â€Chelated Dipyrromethane–Azadipyrromethane Dyad and Triad. Chemistry - A European Journal, 2012, 18, 5239-5247.	1.7	92
46	Electronic, Spectral, and Electrochemical Properties of (TPPBrx)Zn Where TPPBrxIs the Dianion of β-Brominated-Pyrrole Tetraphenylporphyrin andxVaries from 0 to 8. Inorganic Chemistry, 1998, 37, 4567-4572.	1.9	90
47	A Ferroceneâ^'C60â^'Dinitrobenzene Triad:  Synthesis and Computational, Electrochemical, and Photochemical Studies. Journal of Physical Chemistry A, 2002, 106, 649-656.	1.1	90
48	A novel BF ₂ -chelated azadipyrromethene–fullerene dyad: synthesis, electrochemistry and photodynamics. Chemical Communications, 2012, 48, 206-208.	2.2	90
49	Supramolecular Triads Formed by Axial Coordination of Fullerene to Covalently Linked Zinc Porphyrinâ^'Ferrocene(s):  Design, Syntheses, Electrochemistry, and Photochemistry. Journal of Physical Chemistry B, 2004, 108, 11333-11343.	1.2	88
50	Supramolecular porphyrin–fullerene via â€~two-point' binding strategy: Axial-coordination and cation–crown ether complexation. Chemical Communications, 2005, , 1279-1281.	2.2	87
51	Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as photosynthetic composite of antenna-reaction center. Physical Chemistry Chemical Physics, 2010, 12, 7434.	1.3	87
52	Effect of Axial Ligation or π-π-Type Interactions on Photochemical Charge Stabilization in "Two-Point― Bound Supramolecular Porphyrin-Fullerene Conjugates. Chemistry - A European Journal, 2005, 11, 4416-4428.	1.7	84
53	Molecularly imprinted polymer (MIP) based piezoelectric microgravimetry chemosensor for selective determination of adenine. Biosensors and Bioelectronics, 2010, 25, 2522-2529.	5.3	84
54	Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review. Electrochemistry Communications, 2015, 50, 81-87.	2.3	83

#	Article	IF	CITATIONS
55	Multi-Triphenylamine-Substituted Porphyrin-Fullerene Conjugates as Charge Stabilizing "Antennaâ^'Reaction Center―Mimics. Journal of Physical Chemistry A, 2007, 111, 8552-8560.	1.1	81
56	Dual Functioning Thienoâ€Pyrrole Fused BODIPY Dyes for NIR Optical Imaging and Photodynamic Therapy: Singlet Oxygen Generation without Heavy Halogen Atom Assistance. Chemistry - an Asian Journal, 2015, 10, 1335-1343.	1.7	80
57	Photoinduced Electron Transfer in "Two-Point―Bound Supramolecular Triads Composed ofN,N-Dimethylaminophenyl-Fullerene-Pyridine Coordinated to Zinc Porphyrin. Journal of Physical Chemistry A, 2003, 107, 4801-4807.	1.1	79
58	Selfâ€Assembled Singleâ€Walled Carbon Nanotube:Zinc–Porphyrin Hybrids through Ammonium Ion–Crown Ether Interaction: Construction and Electron Transfer. Chemistry - A European Journal, 2007, 13, 8277-8284.	1.7	77
59	Phenothiazine–BODIPY–Fullerene Triads as Photosynthetic Reaction Center Models: Substitution and Solvent Polarity Effects on Photoinduced Charge Separation and Recombination. Chemistry - A European Journal, 2014, 20, 17100-17112.	1.7	76
60	Photosynthetic Reaction Center Mimicry of a "Special Pair―Dimer Linked to Electron Acceptors by a Supramolecular Approach: Self-Assembled Cofacial Zinc Porphyrin Dimer Complexed with Fullerene(s). Chemistry - A European Journal, 2007, 13, 916-922.	1.7	75
61	Ultrafast Photoinduced Energy and Electron Transfer in Multiâ€Modular Donor–Acceptor Conjugates. Chemistry - A European Journal, 2012, 18, 13844-13853.	1.7	75
62	Solar Water Splitting Combining a BiVO ₄ Light Absorber with a Ru-Based Molecular Cocatalyst. Journal of Physical Chemistry C, 2015, 119, 7275-7281.	1,5	75
63	Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chemical Communications, 2011, 47, 7980.	2.2	73
64	Design and Studies on Supramolecular Ferroceneâ^'Porphyrinâ^'Fullerene Constructs for Generating Long-Lived Charge Separated States. Journal of Physical Chemistry B, 2006, 110, 25240-25250.	1.2	72
65	Faceâ€ŧoâ€Face Pacmanâ€Type Porphyrin–Fullerene Dyads: Design, Synthesis, Chargeâ€Transfer Interactions, and Photophysical Studies. Chemistry - A European Journal, 2008, 14, 674-681.	1.7	72
66	Structural studies of a non-covalently linked porphyrin–fullerene dyad. Chemical Communications, 2001, , 267-268.	2.2	71
67	Self-Assembled via Axial Coordination Magnesium Porphyrinâ^'Imidazole Appended Fullerene Dyad:Â Spectroscopic, Electrochemical, Computational, and Photochemical Studies. Journal of Physical Chemistry B, 2005, 109, 10107-10114.	1.2	71
68	Chromogenic Indicator for Anion Reporting Based on an N-Substituted Oxoporphyrinogen. Inorganic Chemistry, 2006, 45, 8288-8296.	1.9	71
69	Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors. Inorganic Chemistry, 2012, 51, 7749-7763.	1.9	71
70	Syntheses, Electrochemistry, and Photodynamics of Ferrocene–Azadipyrromethane Donor–Acceptor Dyads and Triads. Journal of Physical Chemistry A, 2011, 115, 9810-9819.	1.1	69
71	A broad-band capturing and emitting molecular triad: synthesis and photochemistry. Chemical Communications, 2013, 49, 2867.	2.2	69
72	Electrochemistry and Spectral Characterization of Oxidized and Reduced (TPPBrx)FeCl Where TPPBrxls the Dianion of β-Brominated-Pyrrole Tetraphenylporphyrin andxVaries from 0 to 8. Inorganic Chemistry, 1996, 35, 5570-5576.	1.9	67

#	Article	IF	CITATIONS
73	Pyrazinacenes: Aza Analogues of Acenes. Journal of Organic Chemistry, 2009, 74, 8914-8923.	1.7	66
74	Excitationâ€Wavelengthâ€Dependent, Ultrafast Photoinduced Electron Transfer in Bisferrocene/BF ₂ â€Chelatedâ€Azadipyrromethene/Fullerene Tetrads. Chemistry - A European Journal, 2013, 19, 7221-7230.	1.7	65
75	Supramolecular complex composed of a covalently linked zinc porphyrin dimer and fulleropyrrolidine bearing two axially coordinating pyridine entities. Chemical Communications, 2004, , 2276.	2.2	64
76	Molecularly imprinted poly[bis(2,2′-bithienyl)methane] film with built-in molecular recognition sites for a piezoelectric microgravimetry chemosensor for selective determination of dopamine. Bioelectrochemistry, 2010, 80, 62-72.	2.4	63
77	Molecular Recognition via Hydroquinoneâ^'Quinone Pairing:  Electrochemical and Singlet Emission Behavior of [5,10,15-Triphenyl-20-(2,5-dihydroxy- phenyl)porphyrinato]zinc(II)â^'Quinone Complexes. Journal of the American Chemical Society, 1996, 118, 923-924.	6.6	62
78	Highly Nonplanar, Electron Deficient, N-Substituted tetra-Oxocyclohexadienylidene Porphyrinogens:Â Structural, Computational, and Electrochemical Investigations. Journal of Organic Chemistry, 2004, 69, 5861-5869.	1.7	62
79	Vectorial Charge Separation and Selective Triplet-State Formation during Charge Recombination in a Pyrrolyl-Bridged BODIPY–Fullerene Dyad. Journal of Physical Chemistry C, 2015, 119, 8095-8102.	1.5	62
80	Molecularly Imprinted Polymer (MIP) Film with Improved Surface Area Developed by Using Metal–Organic Framework (MOF) for Sensitive Lipocalin (NGAL) Determination. ACS Applied Materials & Interfaces, 2016, 8, 19860-19865.	4.0	61
81	Thieno-Pyrrole-Fused 4,4-Difluoro-4-bora-3a,4a-diaza- <i>s</i> indacene–Fullerene Dyads: Utilization of Near-Infrared Sensitizers for Ultrafast Charge Separation in Donor–Acceptor Systems. Journal of the American Chemical Society, 2014, 136, 7571-7574.	6.6	60
82	Synthesis and Electrochemical Studies of a Series of Fluorinated Dodecaphenylporphyrins. Inorganic Chemistry, 1999, 38, 2188-2198.	1.9	59
83	Photochemical Charge Separation in Closely Positioned Donor–Boron Dipyrrin–Fullerene Triads. Chemistry - A European Journal, 2011, 17, 3147-3156.	1.7	59
84	Sequential Photoinduced Energy and Electron Transfer Directed Improved Performance of the Supramolecular Solar Cell of a Zinc Porphyrin–Zinc Phthalocyanine Conjugate Modified TiO ₂ Surface. Journal of Physical Chemistry C, 2013, 117, 763-773.	1.5	59
85	Charge stabilization in a closely spaced ferrocene–boron dipyrrin–fullerene triad. Chemical Communications, 2010, 46, 3301.	2.2	58
86	A Chargeâ€Stabilizing, Multimodular, Ferrocene–Bis(triphenylamine)–Zincâ€porphyrin–Fullerene Polyad. Chemistry - A European Journal, 2013, 19, 9629-9638.	1.7	57
87	A Supramolecular Tetrad Featuring Covalently Linked Ferrocene–Zinc Porphyrin–BODIPY Coordinated to Fullerene: A Charge Stabilizing, Photosynthetic Antenna–Reaction Center Mimic. Chemistry - A European Journal, 2014, 20, 17089-17099.	1.7	57
88	Photoinduced Charge Separation in Ion-Paired Porphyrinâ^'Single-Wall Carbon Nanotube Donorâ^'Acceptor Hybrids. Journal of Physical Chemistry C, 2009, 113, 13425-13432.	1.5	56
89	Molecularly Imprinted Polymer for Recognition of 5-Fluorouracil by RNA-type Nucleobase Pairing. Analytical Chemistry, 2013, 85, 8304-8312.	3.2	55
90	Electrooxidation of Cobalt(II) β-Brominated-Pyrrole Tetraphenylporphyrins in CH2Cl2 under an N2 or a CO Atmosphere. Inorganic Chemistry, 1997, 36, 6292-6298.	1.9	54

#	Article	IF	CITATIONS
91	Studies on Porphyrinâ^'Quinhydrone Complexes:Â Molecular Recognition of Quinone and Hydroquinone in Solution. Journal of Organic Chemistry, 2001, 66, 4601-4609.	1.7	54
92	Development of Nanopatterned Fluorine-Doped Tin Oxide Electrodes for Dye-Sensitized Solar Cells with Improved Light Trapping. ACS Applied Materials & amp; Interfaces, 2012, 4, 1565-1572.	4.0	54
93	Ultrafast excitation transfer and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. Physical Chemistry Chemical Physics, 2011, 13, 18168.	1.3	53
94	Ultrafast Singletâ^'Singlet Energy Transfer in Self-Assembled via Metalâ^'Ligand Axial Coordination of Free-Base Porphyrinâ^'Zinc Phthalocyanine and Free-Base Porphyrinâ^'Zinc Naphthalocyanine Dyads. Journal of Physical Chemistry A, 2010, 114, 268-277.	1.1	52
95	Self-Assembled via Metal–Ligand Coordination AzaBODIPY–Zinc Phthalocyanine and AzaBODIPY–Zinc Naphthalocyanine Conjugates: Synthesis, Structure, and Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2013, 117, 5638-5649.	1.5	52
96	Excited‧tate Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie - International Edition, 2019, 58, 5712-5717.	7.2	52
97	Spectral, electrochemical, and photophysical studies of a magnesium porphyrin–fullerene dyad. Physical Chemistry Chemical Physics, 2005, 7, 3163.	1.3	51
98	Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosensors and Bioelectronics, 2017, 87, 1012-1019.	5.3	51
99	Spectral and Electrochemical Investigations on the "Tail-On―and "Tail-Off―Mechanism in Pyridine Covalently Bound Zinc(II) Porphyrins. Inorganic Chemistry, 1996, 35, 5747-5749.	1.9	49
100	Supramolecular Donorâ^'Acceptor Hybrid of Electropolymerized Zinc Porphyrin with Axially Coordinated Fullerene: Formation, Characterization, and Photoelectrochemical Properties. Journal of Physical Chemistry C, 2009, 113, 8982-8989.	1.5	49
101	Ultrafast Photoinduced Electron Transfer and Charge Stabilization in Donor–Acceptor Dyads Capable of Harvesting Nearâ€Infrared Light. Chemistry - A European Journal, 2015, 21, 11483-11494.	1.7	49
102	Electrochemical, UV/Visible, and EPR Characterization of Metalloporphycenes Containing First-Row Transition Metals. The Journal of Physical Chemistry, 1994, 98, 11885-11891.	2.9	48
103	Electrocatalytic reduction of molecular oxygen using non-planar cobalt tetrakis-(4-sulfonatophenyl)-β-octabromoporphyrin. Journal of Electroanalytical Chemistry, 1997, 426, 17-21.	1.9	48
104	Molecular Triads Composed of Ferrocene, C60, and Nitroaromatic Entities:Â Electrochemical, Computational, and Photochemical Investigations. Journal of Organic Chemistry, 2002, 67, 9122-9129.	1.7	48
105	Diameterâ€Sorted SWCNT–Porphyrin and SWCNT–Phthalocyanine Conjugates for Lightâ€Energy Harvesting. ChemPhysChem, 2011, 12, 2266-2273.	1.0	48
106	Evolution of Molecular Design of Porphyrin Chromophores for Photovoltaic Materials of Superior Lightâ€ŧoâ€Electricity Conversion Efficiency. Solar Rrl, 2017, 1, 1600002.	3.1	48
107	Bionano Donor–Acceptor Hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for Electron Transfer via Porphyrin Excitation. Journal of the American Chemical Society, 2011, 133, 19922-19930.	6.6	47
108	Simultaneous Chronoamperometry and Piezoelectric Microgravimetry Determination of Nitroaromatic Explosives Using Molecularly Imprinted Thiophene Polymers. Analytical Chemistry, 2013, 85, 8361-8368.	3.2	47

#	Article	IF	CITATIONS
109	Axially assembled photosynthetic reaction center mimics composed of tetrathiafulvalene, aluminum(<scp>iii</scp>) porphyrin and fullerene entities. Nanoscale, 2015, 7, 12151-12165.	2.8	47
110	Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin. Biosensors and Bioelectronics, 2017, 94, 155-161.	5.3	47
111	Design, Syntheses, and Studies of Supramolecular Porphyrinâ^'Fullerene Conjugates, Using Bis-18-crown-6 Appended Porphyrins and Pyridine or Alkyl Ammonium Functionalized Fullerenes. Journal of Physical Chemistry B, 2006, 110, 5905-5913.	1.2	46
112	Photochemical Charge Separation in Supramolecular Phthalocyanineâ^'Multifullerene Conjugates Assembled by Crown Ether-Alkyl Ammonium Cation Interactions. Journal of Physical Chemistry A, 2010, 114, 10951-10959.	1.1	46
113	Thieno–Pyrroleâ€Fused BODIPY Intermediate as a Platform to Multifunctional NIR Agents. Chemistry - an Asian Journal, 2013, 8, 3123-3132.	1.7	46
114	A Highâ€Energy Chargeâ€Separated State of 1.70â€eV from a Highâ€Potential Donor–Acceptor Dyad: A Cata for Energyâ€Demanding Photochemical Reactions. Angewandte Chemie - International Edition, 2016, 55, 11517-11521.	lyst 7.2	46
115	Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing. Journal of Materials Chemistry C, 2017, 5, 969-977.	2.7	46
116	Langmuirâ^'Blodgett Films of a Cationic Zinc Porphyrinâ^'Imidazole-Functionalized Fullerene Dyad:Â Formation and Photoelectrochemical Studies. Langmuir, 2007, 23, 1917-1923.	1.6	45
117	Ultrafast charge separation in supramolecular tetrapyrrole–graphene hybrids. Chemical Communications, 2012, 48, 11859.	2.2	45
118	Bisdonor–azaBODIPY–Fullerene Supramolecules: Syntheses, Characterization, and Light-Induced Electron-Transfer Studies. Journal of Physical Chemistry C, 2014, 118, 2321-2332.	1.5	45
119	Multistep Energy and Electron Transfer in a "Vâ€Configured―Supramolecular BODIPY–azaBODIPY–Fullerene Triad: Mimicry of Photosynthetic Antenna Reactionâ€Center Events. Chemistry - A European Journal, 2015, 21, 2669-2679.	1.7	45
120	Charge Separation in Grapheneâ€Decorated Multimodular Tris(pyrene)–Subphthalocyanine–Fullerene Donor–Acceptor Hybrids. Angewandte Chemie - International Edition, 2015, 54, 5088-5092.	7.2	45
121	Interfacing Transition Metal Dichalcogenides with Carbon Nanodots for Managing Photoinduced Energy and Charge-Transfer Processes. Journal of the American Chemical Society, 2018, 140, 13488-13496.	6.6	45
122	Molecular recognition of adenine, adenosine and ATP at the air–water interface by a uracil appended fullerene. Journal of Materials Chemistry, 2002, 12, 2123-2129.	6.7	44
123	Potassium Ion Controlled Switching of Intra- to Intermolecular Electron Transfer in Crown Ether Appended Free-Base Porphyrinâ^'Fullerene Donorâ^'Acceptor Systems. Journal of Physical Chemistry A, 2006, 110, 4338-4347.	1.1	44
124	Molecularly imprinted polymer of bis(2,2′-bithienyl)methanes for selective determination of adrenaline. Bioelectrochemistry, 2013, 93, 37-45.	2.4	44
125	Photoinduced processes of the supramolecularly functionalized semi-conductive SWCNTs with porphyrinsvia ion-pairing interactions. Energy and Environmental Science, 2011, 4, 707-716.	15.6	43
126	Multi-modular, tris(triphenylamine) zinc porphyrin–zinc phthalocyanine–fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic â€~antenna-reaction center' mimic. Nanoscale, 2015, 7, 6813-6826.	2.8	42

#	Article	IF	CITATIONS
127	Syntheses, Charge Separation, and Inverted Bulk Heterojunction Solar Cell Application of Phenothiazine–Fullerene Dyads. ACS Applied Materials & Interfaces, 2016, 8, 8481-8490.	4.0	42
128	Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosensors and Bioelectronics, 2016, 77, 565-572.	5.3	42
129	Ultrafast Chargeâ€Separation in Triphenylamineâ€BODIPYâ€Derived Triads Carrying Centrally Positioned, Highly Electronâ€Deficient, Dicyanoquinodimethane or Tetracyanobutadiene Electronâ€Acceptors. Chemistry - A European Journal, 2017, 23, 9192-9200.	1.7	42
130	Highâ€Potential Perfluorinated Phthalocyanine–Fullerene Dyads for Generation of Highâ€Energy Chargeâ€Separated States: Formation and Photoinduced Electronâ€Transfer Studies. ChemPhysChem, 2014, 15, 2462-2472.	1.0	41
131	Cytosine derivatized bis(2,2′-bithienyl)methane molecularly imprinted polymer for selective recognition of 6-thioguanine, an antitumor drug. Biosensors and Bioelectronics, 2015, 70, 153-160.	5.3	41
132	Modulation of Energy Transfer into Sequential Electron Transfer upon Axial Coordination of Tetrathiafulvalene in an Aluminum(III) Porphyrin–Free-Base Porphyrin Dyad. Inorganic Chemistry, 2015, 54, 8482-8494.	1.9	41
133	Molecular recognition directed porphyrin chemosensor for selective detection of nicotine and cotinine. Chemical Communications, 2000, , 1915-1916.	2.2	40
134	Predicting the site of electron transfer using DFT frontier orbitals: Studies on porphyrin attached either to quinone or hydroquinone, and quinhydrone self-assembled supramolecular complexes. Computational and Theoretical Chemistry, 2006, 765, 91-103.	1.5	40
135	Supramolecular Triad and Pentad Composed of Zinc–Porphyrin(s), Oxoporphyrinogen, and Fullerene(s): Design and Electron-Transfer Studies. Chemistry - A European Journal, 2007, 13, 4628-4635.	1.7	40
136	Multiple photosynthetic reaction centres using zinc porphyrinic oligopeptide–fulleropyrrolidine supramolecular complexes. Physical Chemistry Chemical Physics, 2011, 13, 17019.	1.3	40
137	Synthesis and study of crown ether-appended boron dipyrrin chemosensors for cation detection. Tetrahedron Letters, 2007, 48, 1977-1982.	0.7	39
138	Light-Induced Electron Transfer of a Supramolecular Bis(Zinc Porphyrin)â^'Fullerene Triad Constructed via a Diacetylamidopyridine/Uracil Hydrogen-Bonding Motif. Journal of Physical Chemistry C, 2007, 111, 12500-12503.	1.5	39
139	Supramolecular Donor–Acceptor Assembly Derived from Tetracarbazole–Zinc Phthalocyanine Coordinated to Fullerene: Design, Synthesis, Photochemical, and Photoelectrochemical Studies. Journal of Physical Chemistry C, 2012, 116, 11964-11972.	1.5	39
140	Extended-gate field-effect transistor (EG-FET) with molecularly imprinted polymer (MIP) film for selective inosine determination. Biosensors and Bioelectronics, 2015, 74, 526-533.	5.3	39
141	Ping-Pong Energy Transfer in a Boron Dipyrromethane Containing Pt(II)–Schiff Base Complex: Synthesis, Photophysical Studies, and Anti-Stokes Shift Increase in Triplet–Triplet Annihilation Upconversion. Inorganic Chemistry, 2018, 57, 4877-4890.	1.9	39
142	Synthesis and application of a "plastic antibody―in electrochemical microfluidic platform for oxytocin determination. Biosensors and Bioelectronics, 2018, 100, 251-258.	5.3	39
143	Synthesis and studies on the electrocatalytic reduction of molecular oxygen by non-planar cobalt(II) tetrakis-(N-methyl pyridyl)-β-octabromoporphyrin. Journal of Electroanalytical Chemistry, 1996, 411, 167-171.	1.9	38
144	Supramolecular triads bearing porphyrin and fullerene via â€~two-point' binding involving coordination and hydrogen bonding. Tetrahedron, 2006, 62, 1967-1978.	1.0	38

#	Article	IF	CITATIONS
145	Enhanced photocurrents via redox modulation by fluoride binding to oxoporphyrinogen in a zinc porphyrin-oxoporphyrinogen surface modified TiO2 supramolecular solar cell. Chemical Communications, 2011, 47, 6003.	2.2	38
146	Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin–fullerene conjugates. Nanoscale, 2016, 8, 8333-8344.	2.8	38
147	Self-assembled supramolecular triad composed of fulleropyrrolidine bearing two pyridine moieties axially coordinated to two zinc porphyrins. Journal of Porphyrins and Phthalocyanines, 2003, 07, 1-7.	0.4	37
148	Electrochemical, Spectral, and Computational Studies of Metalloporphyrin Dimers Formed by Cation Complexation of Crown Ether Cavitiesâ€. Inorganic Chemistry, 2004, 43, 6969-6978.	1.9	37
149	Photoinduced charge separation in wide-band capturing, multi-modular bis(donor) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 1.3	Tf ₃ 50 582 T
150	Strong Ground―and Excitedâ€State Charge Transfer in <i>C₃</i> â€Symmetric Truxeneâ€Derived Phenothiazineâ€Tetracyanobutadine and Expanded Conjugates. Angewandte Chemie - International Edition, 2019, 58, 4350-4355.	7.2	37
151	Acidâ^'Base Properties of Fulleropyrrolidines:Â Experimental and Theoretical Investigations. Journal of Physical Chemistry A, 2000, 104, 6887-6893.	1.1	36
152	Formation, Spectral, Electrochemical, and Photochemical Behavior of Zinc N-Confused Porphyrin Coordinated to Imidazole Functionalized Fullerene Dyads. Inorganic Chemistry, 2006, 45, 5057-5065.	1.9	36
153	Diameter dependent electron transfer in supramolecular nanohybrids of (6,5)- or (7,6)-enriched semiconducting SWCNT as donors and fullerene as acceptor. Chemical Communications, 2010, 46, 8749.	2.2	36
154	Electrochemically synthesized molecularly imprinted polymer of thiophene derivatives for flow-injection analysis determination of adenosine-5′-triphosphate (ATP). Biosensors and Bioelectronics, 2013, 41, 634-641.	5.3	36
155	Chemosensor for Selective Determination of 2,4,6-Trinitrophenol Using a Custom Designed Imprinted Polymer Recognition Unit Cross-Linked to a Fluorophore Transducer. ACS Sensors, 2016, 1, 636-639.	4.0	36
156	Excitedâ€State Electron Transfer in 1,1,4,4â€Tetracyanobutaâ€1,3â€diene (TCBD)―and Cyclohexaâ€2,5â€dieneâ€1,4â€diylideneâ€Expanded TCBDâ€Substituted BODIPYâ€Phenothiazine Donor–Acce Conjugates. Chemistry - A European Journal, 2020, 26, 6869-6878.	pitør	36
157	A â€~two-point' bound zinc porphyrin–zinc phthalocyanine–fullerene supramolecular triad for sequential energy and electron transfer. Chemical Communications, 2013, 49, 7614.	2.2	35
158	Synthesis and Photoinduced Electron Transfer Studies of a Tri(Phenothiazine)–Subphthalocyanine–Fullerene Pentad. Organic Letters, 2013, 15, 4612-4615.	2.4	35
159	Decorating single layer graphene oxide with electron donor and acceptor molecules for the study of photoinduced electron transfer. Chemical Communications, 2013, 49, 2013.	2.2	35
160	Charge stabilizing tris(triphenylamine)-zinc porphyrin–carbon nanotube hybrids: synthesis, characterization and excited state charge transfer studies. Nanoscale, 2017, 9, 7551-7558.	2.8	35
161	Structures, Spectral and Electrochemical Properties ofN-(Naphth-2-ylmethyl)-Appended Porphyrinogens. European Journal of Organic Chemistry, 2005, 2005, 2893-2902.	1.2	34
162	Metal Quinolinolateâ^'Fullerene(s) Donorâ^'Acceptor Complexes: Evidence for Organic LED Molecules Acting as Electron Donors in Photoinduced Electron-Transfer Reactions. Journal of the American Chemical Society, 2008, 130, 16959-16967.	6.6	34

#	Article	IF	CITATIONS
163	Twisted, Two-Faced Porphyrins as Hosts for Bispyridyl Fullerenes: Construction and Photophysical Properties. Journal of Physical Chemistry C, 2008, 112, 10559-10572.	1.5	34
164	New thiophene-based C ₆₀ fullerene derivatives as efficient electron transporting materials for perovskite solar cells. New Journal of Chemistry, 2018, 42, 14551-14558.	1.4	34
165	Conversion of Large-Bandgap Triphenylamine–Benzothiadiazole to Low-Bandgap, Wide-Band Capturing Donor–Acceptor Systems by Tetracyanobutadiene and/or Dicyanoquinodimethane Insertion for Ultrafast Charge Separation. Journal of Physical Chemistry C, 2019, 123, 23382-23389.	1.5	34
166	Impact of fullerene derivative isomeric purity on the performance of inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 19485-19490.	5.2	33
167	β-Functionalized push–pull opp-dibenzoporphyrins as sensitizers for dye-sensitized solar cells: the role of the phenylethynyl bridge. Journal of Materials Chemistry A, 2019, 7, 10712-10722.	5.2	33
168	Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS Applied Materials & Interfaces, 2019, 11, 9265-9276.	4.0	33
169	Decelerating Charge Recombination Using Fluorinated Porphyrins in <i>N,N</i> -Bis(3,4,5-trimethoxyphenyl)aniline—Aluminum(III) Porphyrin—Fullerene Reaction Center Models. Journal of the American Chemical Society, 2020, 142, 10008-10024.	6.6	33
170	Electrochemical and Spectroelectrochemical Investigations of [(TpTP)MvL2]+Cl- Where TpTP Is the Dianion of Tetra-p-tolylporphyrin, M = P or Sb, and L = Cl- or OCH3 Inorganic Chemistry, 1994, 33, 4480-4484.	1.9	32
171	Electrocatalytic Reduction of α,ω-Diiodoalkanes I(CH2)mI (m= 1â^'8) by C60n-(n= 1â^'3) Anions in Solution and at the C60Film-Modified Electrodes. Journal of Physical Chemistry B, 1998, 102, 212-217.	1.2	32
172	Immobilization and electrochemical redox behavior of cytochrome c on fullerene film-modified electrodes. Bioelectrochemistry, 2005, 66, 35-40.	2.4	32
173	Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5′-triphosphate (ATP). Analytica Chimica Acta, 2014, 844, 61-69.	2.6	32
174	Sequential energy transfer followed by electron transfer in a BODIPY–bisstyrylBODIPY bound to C ₆₀ triad <i>via</i> a â€~two-point' binding strategy. Chemical Communications, 2018, 54, 54-57.	2.2	32
175	Preferential Through-Space Charge Separation and Charge Recombination in V-Type Configured Porphyrin–azaBODIPY–Fullerene Supramolecular Triads. Journal of Physical Chemistry C, 2014, 118, 18969-18982.	1.5	31
176	Directly Attached Bisdonorâ€BF ₂ Chelated Azadipyrrometheneâ€Fullerene Tetrads for Promoting Ground and Excited State Charge Transfer. Chemistry - A European Journal, 2017, 23, 4450-4461.	1.7	31
177	Conductive, Capacitive, and Viscoelastic Properties of a New Composite of the C ₆₀ â^'Pd Conducting Polymer and Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2009, 113, 6682-6691.	1.2	30
178	NOR and AND Logic Gates Based on Supramolecular Porphyrinâ^'Fullerene Conjugates. Organic Letters, 2010, 12, 624-627.	2.4	30
179	Effect of Peripheral Substitution and Extended Conjugation on the Redox Potentials of Nickel Porphycenes. Inorganic Chemistry, 1996, 35, 5743-5746.	1.9	29
180	β-Pyrrole brominated meso-tetraphenylporphyrins: synthesis, spectral and electrochemical properties. Journal of Porphyrins and Phthalocyanines, 2004, 08, 201-214.	0.4	29

#	Article	IF	CITATIONS
181	Panchromatic Light Capture and Efficient Excitation Transfer Leading to Nearâ€IR Emission of BODIPY Oligomers. ChemPhysChem, 2016, 17, 2516-2524.	1.0	29
182	Competitive electron transfer in a novel, broad-band capturing, subphthalocyanine–AzaBODIPY–C60 supramolecular triad. Chemical Communications, 2016, 52, 579-581.	2.2	29
183	Axially Assembled Photosynthetic Antenna-Reaction Center Mimics Composed of Boron Dipyrromethenes, Aluminum Porphyrin, and Fullerene Derivatives. Inorganic Chemistry, 2017, 56, 10268-10280.	1.9	29
184	Charge-separation in panchromatic, vertically positioned bis(donor) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 627 Td 10, 20723-20739.	(styryl)BC 2.8	DDIPY–alur 29
185	Highly effective electrochemical anion sensing based on oxoporphyrinogen. Electrochemistry Communications, 2007, 9, 2751-2754.	2.3	28
186	Syntheses and Excitation Transfer Studies of Near-Orthogonal Free-Base Porphyrin–Ruthenium Phthalocyanine Dyads and Pentad. Inorganic Chemistry, 2012, 51, 3656-3665.	1.9	28
187	Directly Connected AzaBODIPY–BODIPY Dyad: Synthesis, Crystal Structure, and Ground- and Excited-State Interactions. Journal of Physical Chemistry A, 2015, 119, 8338-8348.	1.1	28
188	Redox Active Two-Component Films of Palladium and Covalently Linked Zinc Porphyrin–Fullerene Dyad. Electroanalysis, 2006, 18, 841-848.	1.5	27
189	Ultrafast Photoinduced Charge Separation Leading to Highâ€Energy Radical Ionâ€Pairs in Directly Linked Corrole–C ₆₀ and Triphenylamine–Corrole ₆₀ Donor–Acceptor Conjugates. Chemistry - an Asian Journal, 2015, 10, 2708-2719.	1.7	27
190	Triplet–Triplet Excitation Transfer in Palladium Porphyrin–Fullerene and Platinum Porphyrin–Fullerene Dyads. Journal of Physical Chemistry C, 2015, 119, 176-185.	1.5	27
191	Nicotine molecularly imprinted polymer: Synergy of coordination and hydrogen bonding. Biosensors and Bioelectronics, 2015, 64, 657-663.	5.3	27
192	Multiporphyrins-Fullerenes and Multiporphyrins-SWCNTs Mimicking Photosynthetic Antenna-Reaction Center. , 2012, , 389-437.		27
193	Near Unity Photon-to-Electron Conversion Efficiency of Photoelectrochemical Cells Built on Cationic Water-Soluble Porphyrins Electrostatically Decorated onto Thin-Film Nanocrystalline SnO2 Surface. ACS Applied Materials & Interfaces, 2011, 3, 2368-2376.	4.0	26
194	Light-to-electron converting panchromatic supramolecular solar cells of phthalocyanine–porphyrin heterodimers adsorbed onto nanocrystalline SnO2 electrodes. Chemical Communications, 2012, 48, 3641.	2.2	26
195	Multichromophoric Perylenediimide–Silicon Phthalocyanine–C ₆₀ System as an Artificial Photosynthetic Analogue. Chemistry - A European Journal, 2017, 23, 3863-3874.	1.7	26
196	Porphyrinoid rotaxanes: building a mechanical picket fence. Chemical Science, 2017, 8, 6679-6685.	3.7	26
197	Strong Ground―and Excitedâ€State Charge Transfer in <i>C₃</i> â€Symmetric Truxeneâ€Derived Phenothiazineâ€Tetracyanobutadine and Expanded Conjugates. Angewandte Chemie, 2019, 131, 4394-4399.	1.6	26
198	Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film. Bioelectrochemistry, 2021, 138, 107695.	2.4	26

#	Article	IF	CITATIONS
199	Catalytic Reduction of α,ï‰-Dihaloalkanes, X(CH2)mX (X = Cl, Br, or I andm= 2â^'8), by Electrochemically Generated C70n-(n= 2 or 3) in Benzonitrile Solutions. Journal of Physical Chemistry B, 1998, 102, 4247-4252.	1.2	25
200	Electron transfer switching in supramolecular porphyrin–fullerene conjugates held by alkylammonium cation-crown ether binding. Chemical Communications, 2006, , 4327-4329.	2.2	25
201	A Novel Bis(zinc–porphyrin)–Oxoporphyrinogen Donor–Acceptor Triad: Synthesis, Electrochemical, Computational and Photochemical Studies. European Journal of Organic Chemistry, 2006, 2006, 595-603.	1.2	25
202	Self-Assembled Supramolecular Ferroceneâ^'Fullerene Dyads and Triad:  Formation and Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2008, 112, 2222-2229.	1.5	25
203	Through-bond photoinduced electron transfer in a porphyrin-fullerene conjugate held by a Hamilton type hydrogen bonding motif. Organic and Biomolecular Chemistry, 2009, 7, 1076.	1.5	25
204	Femtosecond Transient Absorption Study of Supramolecularly Assembled Metal Tetrapyrrole–TiO2 Thin Films. Journal of Physical Chemistry C, 2014, 118, 16660-16671.	1.5	25
205	Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates. Chemistry - A European Journal, 2016, 22, 1301-1312.	1.7	25
206	Programmed Transfer of Sequence Information into a Molecularly Imprinted Polymer for Hexakis(2,2′-bithien-5-yl) DNA Analogue Formation toward Single-Nucleotide-Polymorphism Detection. ACS Applied Materials & Interfaces, 2017, 9, 3948-3958.	4.0	25
207	Oligonucleotide Determination via Peptide Nucleic Acid Macromolecular Imprinting in an Electropolymerized CG-Rich Artificial Oligomer Analogue. ACS Applied Materials & Interfaces, 2018, 10, 27562-27569.	4.0	25
208	Interfacing Highâ€Energy Chargeâ€Transfer States to a Nearâ€IR Sensitizer for Efficient Electron Transfer upon Nearâ€IR Irradiation. Angewandte Chemie - International Edition, 2020, 59, 23697-23705.	7.2	25
209	Charge stabilization via electron exchange: excited charge separation in symmetric, central triphenylamine derived, dimethylaminophenyl–tetracyanobutadiene donor–acceptor conjugates. Chemical Science, 2021, 12, 1109-1120.	3.7	25
210	A charge transfer state induced by strong exciton coupling in a cofacial μ-oxo-bridged porphyrin heterodimer. Physical Chemistry Chemical Physics, 2021, 23, 960-970.	1.3	25
211	High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents. PLoS ONE, 2016, 11, e0165963.	1.1	25
212	Photophysical studies of supramolecular triads involving zinc naphthalocyanines and pyridylfullerenes with a second electron donor. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1156-1164.	0.4	24
213	Functionalization of Diameterâ€Sorted Semiconductive SWCNTs with Photosensitizing Porphyrins: Syntheses and Photoinduced Electron Transfer. Chemistry - A European Journal, 2012, 18, 11388-11398.	1.7	24
214	Ultrafast charge separation and charge stabilization in axially linked â€~tetrathiafulvalene–aluminum(<scp>iii</scp>) porphyrin–gold(<scp>iii</scp>) porphyrin' reaction center mimics. Physical Chemistry Chemical Physics, 2015, 17, 26346-26358.	1.3	24
215	βâ€Functionalized Push–Pull <i>opp</i> â€Dibenzoporphyrins as Sensitizers for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 2749-2762.	1.7	24
216	Photoinduced energy transfer in carbazole–BODIPY dyads. Physical Chemistry Chemical Physics, 2018, 20. 27418-27428.	1.3	24

#	Article	IF	CITATIONS
217	High-Energy Charge-Separated States by Reductive Electron Transfer Followed by Electron Shift in the Tetraphenylethylene–Aluminum(III) Porphyrin–Fullerene Triad. Journal of Physical Chemistry C, 2019, 123, 131-143.	1.5	24
218	β-cyclodextrin and carboxymethylated β-cyclodextrin polymer film modified electrodes, hosting cobalt porphyrins, as sensors for electrocatalytic determination of oxygen dissolved in solution. Electroanalysis, 1997, 9, 1093-1101.	1.5	23
219	Electrochemistry of Solutions as well as Simultaneous Cyclic Voltammetry and Piezoelectric Microgravimetry of Conducting Films of 2-(n-Alkyl)fulleropyrrolidines. Journal of the Electrochemical Society, 2000, 147, 2647.	1.3	22
	Bis-functionalized fullerene-dibenzo[18]crown-6 conjugate: synthesis and cation-complexation dependent redox behaviorElectronic supplementary information (ESI) available: Energy optimized		

#	Article	IF	CITATIONS
235	Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11, 14978-14992.	2.8	20
236	Multimodal switching of a redox-active macrocycle. Nature Communications, 2019, 10, 1007.	5.8	20
237	Photoinduced Electron Transfer Processes of Functionalized Nanocarbons; Fullerenes, Nanotubes and Graphene. Science Progress, 2013, 96, 369-397.	1.0	19
238	Supramolecular complex of a fused zinc phthalocyanine–zinc porphyrin dyad assembled by two imidazole-C ₆₀ units: ultrafast photoevents. Physical Chemistry Chemical Physics, 2018, 20, 7798-7807.	1.3	19
239	Push–Pull Porphyrins via βâ€Pyrrole Functionalization: Evidence of Excited State Events Leading to Highâ€Potential Charge‣eparated States. Chemistry - A European Journal, 2019, 25, 12991-13001.	1.7	19
240	Excitedâ€6tate Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie, 2019, 131, 5768-5773.	1.6	19
241	Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. Journal of the American Chemical Society, 2022, 144, 10830-10843.	6.6	19
242	Formation and photoinduced properties of zinc porphyrin-SWCNT and zinc phthalocyanine-SWCNT nanohybrids using diameter sorted nanotubes assembled via metal-ligand coordination and π–π stacking. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1033-1043.	0.4	18
243	Nicotine, Cotinine, and Myosmine Determination Using Polymer Films of Tailor-Designed Zinc Porphyrins as Recognition Units for Piezoelectric Microgravimetry Chemosensors. Analytical Chemistry, 2012, 84, 2154-2163.	3.2	18
244	Photoinduced charge separation in three-layer supramolecular nanohybrids: fullerene–porphyrin–SWCNT. Physical Chemistry Chemical Physics, 2012, 14, 2940.	1.3	18
245	Supramolecular Tetrad Featuring Covalently Linked Bis(porphyrin)–Phthalocyanine Coordinated to Fullerene: Construction and Photochemical Studies. Chemistry - A European Journal, 2014, 20, 7725-7735.	1.7	18
246	Ultrafast Photoinduced Charge Separation in Wide-Band-Capturing Self-Assembled Supramolecular Bis(donor styryl)BODIPY-Fullerene Conjugates. Chemistry - A European Journal, 2015, 21, 16005-16016.	1.7	18
247	Expanded Porphyrins: More Confusion All the Time. Angewandte Chemie - International Edition, 2015, 54, 4713-4714.	7.2	18
248	Synergistic catalytic effect of iron metallic glass particles in direct blue dye degradation. Journal of Materials Research, 2015, 30, 1121-1127.	1.2	18
249	Breaking aggregation in a tetrathiafulvalene-fused zinc porphyrin by metal–ligand coordination to form a donor–acceptor hybrid for ultrafast charge separation and charge stabilization. Dalton Transactions, 2015, 44, 359-367.	1.6	18
250	Ultrafast electron transfer in all-carbon-based SWCNT–C ₆₀ donor–acceptor nanoensembles connected by poly(phenylene–ethynylene) spacers. Nanoscale, 2016, 8, 14716-14724.	2.8	18
251	Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids. Nanoscale, 2018, 10, 5205-5213.	2.8	18
252	Axially substituted phosphorous(<scp>v</scp>) corrole with polycyclic aromatic hydrocarbons: syntheses, X-ray structures, and photoinduced energy and electron transfer studies. New Journal of Chemistry, 2018, 42, 8230-8240.	1.4	18

#	Article	IF	CITATIONS
253	Photoinduced Charge Separation Prompted Intervalence Charge Transfer in a Bis(thienyl)diketopyrrolopyrrole Bridged Donorâ€TCBD Pushâ€Pull System. Angewandte Chemie - International Edition, 2021, 60, 20518-20527.	7.2	18
254	A supramolecular Star Wars Tie Fighter Ship: electron transfer in a self-assembled triad composed of two zinc naphthalocyanines and a fullerene. Journal of Porphyrins and Phthalocyanines, 2005, 09, 698-705.	0.4	17
255	Piezomicrogravimetric and Impedimetric Oligonucleotide Biosensors Using Conducting Polymers of Biotinylated Bis(2,2′-bithien-5-yl)methane as Recognition Units. Analytical Chemistry, 2013, 85, 7454-7461.	3.2	17
256	Peripheral versus axial substituted phthalocyanine-double-walled carbon nanotube hybrids as light harvesting systems. Journal of Materials Chemistry C, 2015, 3, 10215-10224.	2.7	17
257	Does Location of BF ₂ -Chelated Dipyrromethene (BODIPY) Ring Functionalization Affect Spectral and Electron Transfer Properties? Studies on α-, β-, and Meso-Functionalized BODIPY-Derived Donor–Acceptor Dyads and Triads. Journal of Physical Chemistry C, 2021, 125, 23911-23921.	1.5	17
258	Bis(subphthalocyanine)–azaBODIPY triad for ultrafast photochemical processes. Physical Chemistry Chemical Physics, 2014, 16, 18720.	1.3	16
259	Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides. Journal of Materials Chemistry C, 2015, 3, 4960-4969.	2.7	16
260	A Highâ€Energy Chargeâ€Separated State of 1.70â€eV from a Highâ€Potential Donor–Acceptor Dyad: A Cata for Energyâ€Demanding Photochemical Reactions. Angewandte Chemie, 2016, 128, 11689-11693.	alyst 1.6	16
261	Molecularly Imprinted Polymer Chemosensor for Selective Determination of an <i>N</i> â€Nitrosoâ€ <scp>l</scp> â€proline Food Toxin. Chemistry - A European Journal, 2017, 23, 1942-1949.	1.7	16
262	Charge Stabilization in High-Potential Zinc Porphyrin-Fullerene via Axial Ligation of Tetrathiafulvalene. Journal of Physical Chemistry C, 2018, 122, 13636-13647.	1.5	16
263	Synthesis, Spectral, Electrochemical and Photovoltaic Studies of A ₃ B Porphyrinic Dyes having Peripheral Donors. ChemPhysChem, 2019, 20, 2627-2634.	1.0	16
264	Protein Determination with Molecularly Imprinted Polymer Recognition Combined with Birefringence Liquid Crystal Detection. Sensors, 2020, 20, 4692.	2.1	16
265	Exclusive triplet electron transfer leading to long-lived radical ion-pair formation in an electron rich platinum porphyrin covalently linked to fullerene dyad. Chemical Communications, 2020, 56, 6058-6061.	2.2	16
266	Unveiling the Photoinduced Electronâ€Đonating Character of MoS ₂ in Covalently Linked Hybrids Featuring Perylenediimide. Angewandte Chemie - International Edition, 2021, 60, 9120-9126.	7.2	16
267	Preparation and selected properties of a composite of the C ₆₀ â€Pd conducting polymer and singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2292-2295.	0.7	15
268	A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging. International Journal of Molecular Sciences, 2017, 18, 323.	1.8	15
269	β-Functionalized push–pull <i>opp</i> -dibenzoporphyrins as sensitizers for dye-sensitized solar cells: the push group effect. Journal of Materials Chemistry A, 2021, 9, 27692-27700.	5.2	15
270	Recent advances in the electrochemistry of porphyrins and phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2002, 06, 285-288.	0.4	14

#	Article	IF	CITATIONS
271	Co-facial magnesium porphyrin dimer complexed with fullerene: photosynthetic reaction center model of 'special pair' self-assembled to electron acceptor. Journal of Porphyrins and Phthalocyanines, 2008, 12, 857-865.	0.4	14
272	4 Tetrapyrrole–Nanocarbon Hybrids: Self-Assembly and Photoinduced Electron Transfer. Handbook of Porphyrin Science, 2010, , 307-437.	0.3	14
273	Effect of anion binding on charge stabilization in a bis-fullerene–oxoporphyrinogen conjugate. Chemical Communications, 2010, 46, 7933.	2.2	14
274	Light Harvesting, Photosensitized Electron Transfer in Nanocarbon–Sensitizer Hybrids. ECS Journal of Solid State Science and Technology, 2013, 2, M3063-M3073.	0.9	14
275	Controlling electron and energy transfer paths by selective excitation in a zinc porphyrin–BODIPY–C ₆₀ multi-modular triad. Nanoscale, 2017, 9, 18054-18065.	2.8	14
276	Electrocatalytic Reduction of Nitrogen to Ammonia: the Roles of Lattice O and N in Reduction at Vanadium Oxynitride Surfaces. ACS Applied Materials & Interfaces, 2022, 14, 531-542.	4.0	14
277	Langmuir–Blodgett Films of Self-Assembled (Alkylether-Derivatized Zn) Tj ETQq1 1 0.784314 rgBT /Overlock 10 for Photoelectrochemical Studies. ACS Applied Materials & Interfaces, 2014, 6, 8688-8701.	0 Tf 50 50 4.0	7 Td (Phthald 13
278	Tuning Optical and Electron Donor Properties by Peripheral Thio–Aryl Substitution of Subphthalocyanine: A New Series of Donor–Acceptor Hybrids for Photoinduced Charge Separation. Chemistry - A European Journal, 2016, 22, 13301-13311.	1.7	13
279	Investigation of the push–pull effects on β-functionalized benzoporphyrins bearing an ethynylphenyl bridge. Physical Chemistry Chemical Physics, 2017, 19, 13182-13188.	1.3	13
280	"Twoâ€Point―Selfâ€Assembly and Photoinduced Electron Transfer in meso â€Ðonor arrying Bis(styryl) T Journal, 2017, 12, 2258-2270.	j ETQq0 0 1.7	0 rgBT /Over 13
281	Strongly Coupled Oxasmaragdyrin–BF ₂ Chelated Dipyrrin Dyads: Syntheses, Xâ€ray Structure, Ground―and Excitedâ€State Chargeâ€Transfer Interactions. Chemistry - A European Journal, 2017, 23, 1546-1556.	1.7	13
282	Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. Journal of the American Chemical Society, 2019, 141, 19570-19574.	6.6	13
283	Nickel(II) Bisporphyrinâ€Fused Pentacenes Exhibiting Abnormal High Stability. Angewandte Chemie - International Edition, 2020, 59, 20075-20082.	7.2	13
284	Nearâ€IR Intramolecular Charge Transfer in Strongly Interacting Diphenothiazeneâ€TCBD and Diphenothiazeneâ€DCNQ Pushâ€Pull Triads. Chemistry - A European Journal, 2022, 28, .	1.7	13
285	Interfacial Electron Transfer Followed by Photooxidation in <i>N</i> , <i>N</i> -,Bis(<i>p</i> -anisole)aminopyridine–Aluminum(III) Porphyrin–Titanium(IV) Oxide Self-Assembled Photoanodes. Journal of Physical Chemistry C, 2017, 121, 14484-14497.	1.5	12
286	Competitive Energy and Electron Transfer in βâ€Functionalized Freeâ€Base Porphyrin–Zinc Porphyrin Dimer Axially Coordinated to C 60 : Synthesis, Supramolecular Formation and Excited‧tate Processes. Chemistry - A European Journal, 2017, 23, 12805-12814.	1.7	12
287	N-Doped graphene/C60 covalent hybrid as a new material for energy harvesting applications. Chemical Science, 2018, 9, 8221-8227.	3.7	12
288	Knock-on synthesis of tritopic calix[4]pyrrole host for enhanced anion interactions. Dalton Transactions, 2019, 48, 15583-15596.	1.6	12

#	Article	IF	CITATIONS
289	Preparation, Photophysical and Electrochemical Evaluation of an Azaborondipyrromethene/Zinc Porphyrin/Graphene Supramolecular Nanoensemble. Chemistry - A European Journal, 2020, 26, 6652-6661.	1.7	12
290	Pyrazinacenes exhibit on-surface oxidation-state-dependent conformational and self-assembly behaviours. Communications Chemistry, 2021, 4, .	2.0	12
291	X-ray structural and DFT computational studies of a self-assembled via axial coordination magnesium porphyrin-fullerene conjugate. Journal of Porphyrins and Phthalocyanines, 2005, 09, 691-697.	0.4	11
292	A Versatile Material for a Symmetrical Electric Energy Storage Device: A Composite of the Polymer of the Ferrocene Adduct of C ₆₀ and Single-Wall Carbon Nanotubes Exhibiting Redox Conductivity at Both Positive and Negative Potentials. Journal of Physical Chemistry C, 2013, 117, 1995-2007.	1.5	11
293	Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation. Nanoscale, 2015, 7, 15840-15851.	2.8	11
294	Sequential, Ultrafast Energy Transfer and Electron Transfer in a Fused Zinc Phthalocyanineâ€freeâ€base Porphyrinâ€C ₆₀ Supramolecular Triad. ChemPhysChem, 2019, 20, 163-172.	1.0	11
295	A Synthetic Approach to β-Functionalized Naphtho[2,3]porphyrins. Organic Letters, 2020, 22, 7078-7082.	2.4	11
296	Distance Matters: Effect of the Spacer Length on the Photophysical Properties of Multimodular Perylenediimide–Silicon Phthalocyanine–Fullerene Triads. Chemistry - A European Journal, 2020, 26, 4822-4832.	1.7	11
297	Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin. Chemical Science, 2021, 12, 4925-4930.	3.7	11
298	Singlet Oxygen Generation in Peripherally Modified Platinum and Palladium Porphyrins: Effect of Triplet Excited State Lifetimes and <i>meso</i> â€6ubstituents on ¹ O ₂ Quantum Yields. ChemPlusChem, 2022, 87, e202200010.	1.3	11
299	Coordination behaviour of metalloporphyrins with intramolecularly linked thiolate ligand. Inorganica Chimica Acta, 1990, 176, 131-137.	1.2	10
300	Electrochemical and Spectroelectrochemical Characterization of Water-soluble, β-Pyrrolebrominated Cobalt Porphyrins. Journal of Porphyrins and Phthalocyanines, 1998, 02, 429-437.	0.4	10
301	Pyren-1-ylmethyl N-substituted oxoporphyrinogens. Journal of Porphyrins and Phthalocyanines, 2007, 11, 390-396.	0.4	10
302	Excitation transfer in metal-ligand coordinated free-base porphyrin-magnesium phthalocyanine and free-base porphyrin-magnesium naphthalocyanine dyads. Journal of Porphyrins and Phthalocyanines, 2010, 14, 948-961.	0.4	10
303	Chlorin e6 sensitized photovoltaic cells: effect of co-adsorbents on cell performance, charge transfer resistance, and charge recombination dynamics. Journal of Photonics for Energy, 2015, 5, 053089.	0.8	10
304	Effect of Spacer Connecting the Secondary Electron Donor Phenothiazine in Subphthalocyanine–Fullerene Conjugates in Promoting Electron Transfer Followed by Hole Shift Process. Chemistry - an Asian Journal, 2016, 11, 1246-1256.	1.7	10
305	Paddle-Wheel BODIPY–Hexaoxatriphenylene Conjugates: Participation of Redox-Active Hexaoxatriphenylene in Excited-State Charge Separation to Yield High-Energy Charge-Separated States. Journal of Physical Chemistry A, 2018, 122, 3780-3786.	1.1	10
306	Interfacing Highâ€Energy Chargeâ€Transfer States to a Nearâ€IR Sensitizer for Efficient Electron Transfer upon Nearâ€IR Irradiation. Angewandte Chemie, 2020, 132, 23905-23913.	1.6	10

#	Article	IF	CITATIONS
307	Formation of Highly Efficient, Longâ€Lived Charge Separated States in Starâ€Shaped Ferroceneâ€Diketopyrrolopyrroleâ€Triphenylamine Donor–Acceptor–Donor Conjugates. Chemistry - A European Journal, 2020, 26, 15109-15115.	1.7	10
308	Triplet photosensitizer-nanotube conjugates: synthesis, characterization and photochemistry of charge stabilizing, palladium porphyrin/carbon nanotube conjugates. Nanoscale, 2020, 12, 9890-9898.	2.8	10
309	Communication—Electrochemical Reduction of N ₂ to Ammonia by Vanadium Oxide Thin Films at Neutral pH: Oxophilicity and the NRR Reaction. Journal of the Electrochemical Society, 2021, 168, 026504.	1.3	10
310	Chargeâ€Transfer in Panchromatic Porphyrinâ€Tetracyanobutaâ€1,3â€Dieneâ€Donor Conjugates: Switching the Role of Porphyrin in the Charge Separation Process. Chemistry - A European Journal, 2021, 27, 14335-14344.	1.7	10
311	Absorption and emission modulation in a MoS ₂ –GaN (0001) heterostructure by interface phonon–exciton coupling. Photonics Research, 2019, 7, 1511.	3.4	10
312	Photoinduced electron transfer in a directly linked meso-triphenylamine zinc porphyrin-quinone dyad. Journal of Porphyrins and Phthalocyanines, 2011, 15, 391-400.	0.4	9
313	Charge separation in supramolecular ferrocene(s)-zinc porphyrin-fullerene triads: A femtosecond transient absorption study. Journal of Porphyrins and Phthalocyanines, 2015, 19, 270-280.	0.4	9
314	Metalloporphyrins in Solar Energy Conversion. , 2016, , 171-262.		9
315	High singlet oxygen production and negative solvatochromism of octabrominated 3-pyrrolyl boron dipyrromethenes. RSC Advances, 2016, 6, 24111-24114.	1.7	9
316	Fluoride-ion-binding promoted photoinduced charge separation in a self-assembled C ₆₀ alkyl cation bound bis-crown ether-oxoporphyrinogen supramolecule. Chemical Communications, 2018, 54, 1351-1354.	2.2	9
317	Directly Linked Zinc Phthalocyanine–Perylenediimide Dyads and a Triad for Ultrafast Charge Separation. Chemistry - A European Journal, 2019, 25, 10123-10132.	1.7	9
318	Oligonucleotide Analogs and Mimics for Sensing Macromolecular Biocompounds. Trends in Biotechnology, 2019, 37, 1051-1062.	4.9	9
319	Supramolecular ultrafast energy and electron transfer in a directly linked BODIPY–oxoporphyrinogen dyad upon fluoride ion binding. Chemical Communications, 2020, 56, 3855-3858.	2.2	9
320	Photoinduced charge separation in an oligophenylenevinylene-based Hamilton-type receptor supramolecularly associating two C ₆₀ -barbiturate guests. Physical Chemistry Chemical Physics, 2016, 18, 811-817.	1.3	8
321	Anion binding, electrochemistry and solvatochromism of β-brominated oxoporphyrinogens. Dalton Transactions, 2016, 45, 4006-4016.	1.6	8
322	Phenothiazineâ€5ensitized Solar Cells: Effect of Number of Cyanocinnamic Acid Anchoring Groups on Dyeâ€5ensitized Solar Cell Performance. ChemPlusChem, 2017, 82, 896-903.	1.3	8
323	Investigation of the push–pull effects on β-functionalized zinc porphyrin coordinated to C60 donor–acceptor conjugates. Canadian Journal of Chemistry, 2018, 96, 881-889.	0.6	8
324	<i>C</i> ₃ -Symmetric Positional Isomers of BODIPY Substituted Triazines: Synthesis and Excited State Properties. Journal of Physical Chemistry A, 2018, 122, 4829-4837.	1.1	8

#	Article	IF	CITATIONS
325	Acceleration and Stabilization of Electron Transfer Products with Improved Quantum Yields upon Cation Binding to a Fused Bis-Zinc Porphyrin-Quinone Donor–Acceptor Conjugate. Journal of Physical Chemistry C, 2019, 123, 22066-22073.	1.5	8
326	meso ―and βâ€Pyrroleâ€Linked Chlorinâ€Bacteriochlorin Dyads for Promoting Farâ€Red FRET and Singlet Oxyge Production. Chemistry - A European Journal, 2020, 26, 14996-15006.	2n 1.7	8
327	Oneâ€Photon Excitation Followed by a Threeâ€Step Sequential Energy–Energy–Electron Transfer Leading to a Chargeâ€Separated State in a Supramolecular Tetrad Featuring Benzothiazole–Boronâ€Dipyrromethene–Zinc Porphyrin–C ₆₀ . Chemistry - A European Iournal. 2021. 27. 2184-2195.	1.7	8
328	Donor-acceptor conjugates derived from cobalt porphyrin and fullerene <i>via</i> metal-ligand axial coordination: Formation and excited state charge separation. Journal of Porphyrins and Phthalocyanines, 2021, 25, 533-546.	0.4	8
329	Two-component polymer films of palladium and fullerene with covalently linked crown ether voids: effect of cation binding on the redox behavior. Journal of Solid State Electrochemistry, 2012, 16, 65-74.	1.2	7
330	Improvement in the photocurrent collection due to enhanced absorption of light by synthesizing staggered layers of silver nanoclusters in silicon. AIP Conference Proceedings, 2015, , .	0.3	7
331	Synthesis and photochemical studies of a tris(4-iodophenoxy) subphthalocyaninato boron(III)-fulleropyrrolidine dyad. Journal of Porphyrins and Phthalocyanines, 2016, 20, 987-996.	0.4	7
332	Geometryâ€Controlled Photoinduced Charge Separation and Recombination in a <i>Trans</i> â€A ₂ B ₂ â€Functionalized Donor–Acceptor Conjugate Composed of a Multimodular Zinc Porphyrin and Fullerene. ChemPhotoChem, 2017, 1, 17-25.	1.5	7
333	Plasmonically Induced Transparency in Graphene Oxide Quantum Dots with Dressed Phonon States. ACS Photonics, 2018, 5, 614-620.	3.2	7
334	Active Control of Coherent Dynamics in Hybrid Plasmonic MoS ₂ Monolayers with Dressed Phonons. ACS Photonics, 2019, 6, 1645-1655.	3.2	7
335	Promoting bioanalytical concepts in genetics: A TATA box molecularly imprinted polymer as a small isolated fragment of the DNA damage repairing system. Materials Science and Engineering C, 2019, 100, 1-10.	3.8	7
336	Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. Chemical Science, 2020, 11, 2614-2620.	3.7	7
337	Selective Impedimetric Chemosensing of Carcinogenic Heterocyclic Aromatic Amine in Pork by dsDNA-Mimicking Molecularly Imprinted Polymer Film-Coated Electrodes. Journal of Agricultural and Food Chemistry, 2021, 69, 14689-14698.	2.4	7
338	Antimony(+5) ion induced tunable intramolecular charge transfer in hypervalent antimony(<scp>v</scp>) porphyrins. Dalton Transactions, 2022, 51, 5890-5903.	1.6	7
339	Structures and properties of hemiquinone-substituted oxoporphyrinogens. Journal of Porphyrins and Phthalocyanines, 2009, 13, 60-69.	0.4	6
340	Studies on the Photocatalytic Electron Pooling of Graphene Oxide Hybrids Decorated with Electron Donor and Electron Acceptor Molecules. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 128-137.	1.0	6
341	Selective octabromination of tetraarylporphyrins based on <i>meso</i> -substituent identity: Structural and electrochemical studies. Journal of Porphyrins and Phthalocyanines, 2016, 20, 213-222.	0.4	6
342	Surface anchored self-assembled reaction centre mimics as photoanodes consisting of a secondary electron donor, aluminium(<scp>iii</scp>) porphyrin and TiO ₂ semiconductor. Physical Chemistry Chemical Physics, 2019, 21, 19612-19622.	1.3	6

#	Article	IF	CITATIONS
343	Selective Phase Transfer Reagents (OxPâ€crowns) for Chromogenic Detection of Nitrates Especially Ammonium Nitrate. Chemistry - A European Journal, 2020, 26, 13177-13183.	1.7	6
344	Persubstituted Triphenylamine Bearing Zinc Porphyrin to Host Endohedral Fullerene, Sc ₃ N@C ₈₀ : Formation and Excited State Electron Transfer. Journal of Physical Chemistry B, 2020, 124, 5723-5729.	1.2	6
345	Self-Assembly-Directed Organization of a Fullerene–Bisporphyrin into Supramolecular Giant Donut Structures for Excited-State Charge Stabilization. Journal of the American Chemical Society, 2021, 143, 11199-11208.	6.6	6
346	Rational Design and Synthesis of OEP and TPP Centered Phosphorus(V) Porphyrin–Naphthalene Conjugates: Triplet Formation via Rapid Charge Recombination. Inorganic Chemistry, 2021, 60, 17952-17965.	1.9	6
347	Unexpected but convenient synthesis of soluble meso-tetrakis(3,4-benzoquinone)-substituted porphyrins. Journal of Porphyrins and Phthalocyanines, 2014, 18, 173-181.	0.4	5
348	Phenanthrolineâ€Fused Pyrazinacenes: Oneâ€Pot Synthesis, Tautomerization and a Ru II (2,2′â€bpy) 2 Derivative. European Journal of Inorganic Chemistry, 2018, 2018, 2541-2548.	1.0	5
349	Synthesis, Electrochemical and Photochemical Studies on Ï€â€Extended Monoâ€ <i>β</i> â€Functionalized Porphyrin Dyads. ChemPhotoChem, 2019, 3, 151-165.	1.5	5
350	A2 and A2B2 Benzoporphyrins as sensitizers for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2019, 23, 599-610.	0.4	5
351	Polymer network of graphene oxide with covalently attached 2-(4′-Hydroxyphenyl)fulleropyrrolidine and Palladium: Synthesis, properties and theoretical studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 249, 114406.	1.7	5
352	Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess. Frontiers of Chemical Science and Engineering, 2020, 14, 28-40.	2.3	5
353	Distanceâ€Dependent Electron Transfer Kinetics in Axially Connected Silicon Phthalocyanineâ€Fullerene Conjugates. ChemPhysChem, 2020, 21, 2254-2262.	1.0	5
354	Fluorinated aluminum(III) porphyrins: Synthesis, spectroscopy, electrochemistry and photochemistry. Journal of Porphyrins and Phthalocyanines, 2021, 25, 456-468.	0.4	5
355	Excited State Charge Separation in an Azobenzeneâ€Bridged Perylenediimide Dimer – Effect of Photochemical Transâ€Cis Isomerization. Chemistry - A European Journal, 2021, 27, 14996-15005.	1.7	5
356	Studies of a supramolecular photoelectrochemical cell using magnesium tetraphenylporphyrin as photosensitizer. Journal of Porphyrins and Phthalocyanines, 2013, 17, 733-741.	0.4	4
357	Occurrence of excited state charge separation in a N-doped graphene–perylenediimide hybrid formed <i>via</i> â€~click' chemistry. Nanoscale Advances, 2019, 1, 4009-4015.	2.2	4
358	Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and β-substitution. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1184-1194.	0.4	4
359	A zinc phthalocyanine–benzoperylenetriimide conjugate for solvent dependent ultrafast energy vs. electron transfer. Chemical Communications, 2019, 55, 14946-14949.	2.2	4
360	Nickel(II) Bisporphyrinâ€Fused Pentacenes Exhibiting Abnormal High Stability. Angewandte Chemie, 2020, 132, 20250-20257.	1.6	4

#	Article	IF	CITATIONS
361	Electron and energy transfer in a porphyrin–oxoporphyrinogen–fullerene triad, ZnP–OxP–C ₆₀ . Physical Chemistry Chemical Physics, 2020, 22, 14356-14363.	1.3	4
362	Photoinduced Electron Transfer in Axially Coordinated Supramolecular Zinc Tetrapyrrole Bis(styryl)BODIPY Donorâ€Acceptor Conjugates. ChemPhotoChem, 2021, 5, 260-269.	1.5	4
363	Photoinduced Charge Separation Prompted Intervalence Charge Transfer in a Bis(thienyl)diketopyrrolopyrrole Bridged Donorâ€TCBD Pushâ€Pull System. Angewandte Chemie, 2021, 133, 20681-20690.	1.6	4
364	Sequential electron transfer in a bis(styryl)BODIPY-aluminum(III) porphyrin – naphthalenediimide reaction center mimic. Journal of Porphyrins and Phthalocyanines, 2022, 26, 407-417.	0.4	4
365	Title is missing!. Journal of Chemical Crystallography, 1999, 29, 849-853.	0.5	3
366	Fluorophore(s) Appended Fullerene Dyads and Triads for Probing Photoinduced Energy Transfer: Syntheses, Electronic Structure, and Fluorescence Studies. Photosynthesis Research, 2006, 87, 105-114.	1.6	3
367	Nanostructuring of Watson–Crick type base-paired (C60-uracil):(2-aminopurine) conjugates in Langmuir films. Physica Status Solidi (B): Basic Research, 2007, 244, 3861-3867.	0.7	3
368	Preparation, Properties, and Application of Polymer Composites of Carbon Nanotubes. World Scientific Series on Carbon Nanoscience, 2011, , 693-753.	0.1	3
369	Meso â€Biphenylâ€Linked, Near―and Farâ€Infrared Emitting, Chlorin and Bacteriochlorin Dimers: Synthesis, Excitation Transfer, and Singlet Oxygen Production. ChemPlusChem, 2021, 86, 674-680.	1.3	3
370	Sequential Electron Transfer in a BODIPY–Aluminum(III) Porphyrin–C60 Triad Studied by Transient EPR Spectroscopy. Applied Magnetic Resonance, 0, , 1.	0.6	3
371	Synthesis and photoinduced charge stabilization in molecular tetrads featuring covalently linked triphenylamine-oligothiophene-BODIPY-C60. Journal of Chemical Sciences, 2021, 133, 1.	0.7	3
372	Formation and Photoinduced Electron Transfer in Porphyrin―and Phthalocyanineâ€Bearing Nâ€Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry - A European Journal, 2022, , .	1.7	3
373	Molecularly Imprinted Polymers as Synthetic Catalysts. , 2016, , 183-210.		2
374	Singlet Oxygen Generation and Photoinduced Charge Separation of Tetra Polyethyleneglycol Functionalized Zinc Phthalocyanineâ€Fullerene Dyad. Chinese Journal of Chemistry, 2016, 34, 969-974.	2.6	2
375	Excited State Charge Separation in Solution and in Electropolymerized Films of Terthiophene-Fullerene Dyad and Phenothiazine-Terthiophene-Fullerene Triad. ECS Journal of Solid State Science and Technology, 2017, 6, M3007-M3013.	0.9	2
376	Sc3N@Ih-C80 based donor–acceptor conjugate: role of thiophene spacer in promoting ultrafast excited state charge separation. RSC Advances, 2020, 10, 19861-19866.	1.7	2
377	Excited state dynamics and electron transfer in a phosphorus(V) porphyrin – TEMPO conjugate. Journal of Chemical Sciences, 2021, 133, 1.	0.7	2
378	Photoinduced energy and electron transfer in a cofacial aluminum(III) porphyrin – Phosphorus(V) porphyrin heterodimer. Journal of Photochemistry and Photobiology, 2021, 8, 100069.	1.1	2

#	Article	IF	CITATIONS
379	Review—Two Different Multiple Photosynthetic Reaction Centers Using Either Zinc Porphyrinic Oligopeptide-Fulleropyrrolidine or Free-Base Porphyrinic Polypeptide-Li+@C60 Supramolecular Complexes. ECS Journal of Solid State Science and Technology, 2020, 9, 061026.	0.9	2
380	Quadrupolar Ultrafast Charge Transfer in Diaminoazobenzeneâ€Bridged Perylenediimide Triads. Chemistry - A European Journal, 2022, 28, .	1.7	2
381	Optical and photophysical properties of platinum benzoporphyrins with C2v and D2h symmetry. Journal of Porphyrins and Phthalocyanines, 2022, 26, 458-468.	0.4	2
382	Charge-transfer Interactions of Octaethylporphycenatozinc(II) with 2,6-Dichloro-3,5-dicyano-1,4-benzoquinone. Journal of Porphyrins and Phthalocyanines, 1997, 01, 101-107.	0.4	1
383	Simultaneous CV and EQCM study of thin-solid films of higher fullerenes: C[sub 76], C[sub 78] and C[sub 84]. AIP Conference Proceedings, 2001, , .	0.3	1
384	Self-assembling of C60-imidazole and C60-pyridine adducts in the Langmuir and Langmuir-Blodgett films via complex formation with water-soluble zinc porphyrins. AIP Conference Proceedings, 2003, , .	0.3	1
385	Determination of Asymmetric Dimethylarginine by Using Organic Semiconductor-Based Molecularly Imprinted Polymer Film. ECS Journal of Solid State Science and Technology, 2018, 7, Q3189-Q3195.	0.9	1
386	Titelbild: Interfacing Highâ€Energy Chargeâ€Transfer States to a Nearâ€IR Sensitizer for Efficient Electron Transfer upon Nearâ€IR Irradiation (Angew. Chem. 52/2020). Angewandte Chemie, 2020, 132, 23549-23549.	1.6	1
387	Excited state electron transfer in A ₂ and A ₂ B ₂ functionalized zinc porphyrins carrying rigid and flexible β-pyrrole π-extended substituents. Journal of Porphyrins and Phthalocyanines, 2020, 24, 904-919.	0.4	1
388	Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores. Chemical Communications, 2020, 56, 7447-7450.	2.2	1
389	Electropolymerizable meso-Tetrakis Biphenyl-Bis(bithiophene) Zinc Porphyrin: Ground and Excited State Properties in Solution and in Films with Axially Coordinated C ₆₀ . ECS Journal of Solid State Science and Technology, 2020, 9, 061008.	0.9	1
390	Unveiling the Photoinduced Electronâ€Donating Character of MoS 2 in Covalently Linked Hybrids Featuring Perylenediimide. Angewandte Chemie, 2021, 133, 9202-9208.	1.6	1
391	Analyte Interactions with Oxoporphyrinogen Derivatives: Computational Aspects. Current Organic Chemistry, 2022, 26, 580-595.	0.9	1
392	Bis-functionalized fullerene-dibenzo[18]crown-6 conjugate: synthesis and cation-complexation dependent redox behavior. Chemical Communications, 2003, , 1754-5.	2.2	1
393	Dedication to Professor V. Krishnan on the Occasion of his Sixtieth Birthday. Journal of Porphyrins and Phthalocyanines, 1998, 02, 289-293.	0.4	Ο
394	Interfacial molecular recognition of adenine, adenosine and ATP by a C60-uracil adduct via complementary base pairing. AIP Conference Proceedings, 2002, , .	0.3	0
395	Preparation, surface characteristics and electrochemical properties of electrophoretically deposited C60 films. AIP Conference Proceedings, 2005, , .	0.3	0
396	Ultrafast excitation transfer and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. Faraday Discussions, 2011, , .	1.6	0

#	Article	IF	CITATIONS
397	Carbon Nanotube–Based Chemo- and Biosensors. World Scientific Series on Carbon Nanoscience, 2012, , 151-202.	0.1	0
398	Preface — Special Issue in Honor of Professor Shunichi Fukuzumi. Journal of Porphyrins and Phthalocyanines, 2015, 19, i-xvi.	0.4	0
399	Photovoltaics: Plasmonic Enhancement of Biosolar Cells Employing Light Harvesting Complex II Incorporated with Core-Shell Metal@TiO2Nanoparticles (Adv. Mater. Interfaces 15/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
400	Geometry-Controlled Photoinduced Charge Separation and Recombination in a Trans -A2 B2 -Functionalized Donor-Acceptor Conjugate Composed of a Multimodular Zinc Porphyrin and Fullerene. ChemPhotoChem, 2017, 1, 5-5.	1.5	0
401	Semi-Covalent Imprinting for Selective Protein Sensing at a Femtomolar Concentration Level. Proceedings (mdpi), 2017, 1, .	0.2	0
402	Self-Reporting Molecularly Imprinted Polymer for Label-Free Selective Electrochemical Sensing of p-synephrine. Proceedings (mdpi), 2017, 1, .	0.2	0
403	Distanceâ€Dependent Electron Transfer Kinetics in Axially Connected Silicon Phthalocyanineâ€Fullerene Conjugates. ChemPhysChem, 2020, 21, 2232-2232.	1.0	0
404	A2 and A2B2 Benzoporphyrins as sensitizers for dye-sensitized solar cells. , 2021, , 1077-1088.		0
405	Self-Reporting Molecularly Imprinted Polymer with Covalently Immobilized Ferrocene Redox Probe for Selective Electrochemical Sensing of P-Synephrine. ECS Meeting Abstracts, 2021, MA2021-01, 1368-1368.	0.0	0
406	(Invited) Beta, Beta-Functionalized Push-Pull Opp-Dibenzoporphyrins As Sensitizers for Dye-Sensitized Solar Cells: The Role of the Phenylethynyl Bridge and the Tertiary Amine Push Group. ECS Meeting Abstracts, 2021, MA2021-01, 717-717.	0.0	0
407	Photoinduced Electron Transfer of SWCNT-Based Supramolecular Nanoarchitectures with Photosensitizing Molecules. Transactions of the Materials Research Society of Japan, 2011, 36, 341-344.	0.2	0
408	Preface—JSS Focus Issue on Porphyrins, Phthalocyanines, and Supramolecular Assemblies in Honor of Karl M. Kadish. ECS Journal of Solid State Science and Technology, 2020, 9, 080001.	0.9	0
409	Cover Feature: Formation and Photoinduced Electron Transfer in Porphyrin―and Phthalocyanineâ€Bearing Nâ€Doped Graphene Hybrids Synthesized by Click Chemistry (Chem. Eur. J.) Tj ETQq1 1	017784314	4 ngBT /Overl
410	(Invited) A Carbon Nanotube Binding Bis(pyrenylstyryl)Bodipy-C60 Nano Tweezer: Formation and Photoinduced Charge Separation in Supramolecular C60-Bodipy-SWCNT Triads. ECS Meeting Abstracts, 2022, MA2022-01, 825-825.	0.0	0
411	(Invited) Untethering the Tether Towards Spontaneously Self-Assembled Donuts. ECS Meeting Abstracts, 2022, MA2022-01, 827-827.	0.0	0
412	Phosphorus(V) Porphyrin: A Reductive Electron Quencher in Donor-Acceptor Systems. ECS Meeting Abstracts, 2022, MA2022-01, 980-980.	0.0	0
413	(Invited) Pi-Extended Porphyrins: Synthesis, Functionalization and Applications in Dye-Sensitized Solar Cells. ECS Meeting Abstracts, 2022, MA2022-01, 903-903.	0.0	0
414	Ultrafast Charge-Transfer in Panchromatic, Push-Pull Porphyrin-Tetracyanobuta-1,3-Diene-Donor Conjugates. ECS Meeting Abstracts, 2022, MA2022-01, 976-976.	0.0	0

#	Article	IF	CITATIONS
415	Electro-Catalytic Reduction of Nitrogen to Ammonia By Vanadium Oxide and Vanadium Oxynitride Thin Films: The Roles of Metal Oxophilicity, and Lattice Oxygen and Nitrogen Towards NRR. ECS Meeting Abstracts, 2022, MA2022-01, 1893-1893.	0.0	0