Josep Armengol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9007870/publications.pdf

Version: 2024-02-01

146 papers 3,668 citations

172386 29 h-index 197736 49 g-index

146 all docs

146
docs citations

146 times ranked 2766 citing authors

#	Article	IF	Citations
1	Susceptibility of Almond (<i>Prunus dulcis</i>) Cultivars to Twig Canker and Shoot Blight Caused by <i>Diaporthe amygdali</i> . Plant Disease, 2022, 106, 1890-1897.	0.7	4
2	New report of Biscogniauxia rosacearum as a pathogen on almond trees in Iran. Journal of Plant Diseases and Protection, 2022, 129, 411-417.	1.6	0
3	Survey of Oomycetes Associated with Root and Crown Rot of Almond in Spain and Pathogenicity of Phytophthora niederhauserii and Phytopythium vexans to †Garnem†Rootstock. Agriculture (Switzerland), 2022, 12, 294.	1.4	9
4	Occurrence and diversity of black-foot pathogens on asymptomatic nursery-produced grapevines in Turkiye. European Journal of Plant Pathology, 2022, 164, 21-32.	0.8	1
5	Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research, 2021, 27, 8-25.	1.0	46
6	First Report of Diaporthe amygdali Associated with Twig Canker and Shoot Blight of Nectarine in Spain. Plant Disease, 2021, , .	0.7	2
7	Cultivar Susceptibility to Natural Infections Caused by Fungal Grapevine Trunk Pathogens in La Mancha Designation of Origin (Spain). Plants, 2021, 10, 1171.	1.6	9
8	<i>Cadophora sabaouae</i> sp. nov. and <i>Phaeoacremonium</i> Species Associated with Petri Disease on Grapevine Propagation Material and Young Grapevines in Algeria. Plant Disease, 2021, 105, 3657-3668.	0.7	7
9	Evaluation of Sown Cover Crops and Spontaneous Weed Flora as a Potential Reservoir of Black-Foot Pathogens in Organic Viticulture. Biology, 2021, 10, 498.	1.3	3
10	Cultivar Contributes to the Beneficial Effects of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to Protect Grapevine Against Neofusicoccum parvum. Frontiers in Microbiology, 2021, 12, 726132.	1.5	33
11	Relationship Between the Xylem Anatomy of Grapevine Rootstocks and Their Susceptibility to Phaeoacremonium minimum and Phaeomoniella chlamydospora. Frontiers in Plant Science, 2021, 12, 726461.	1.7	8
12	Fungal Trunk Pathogens Associated With <i>Juglans regia</i> in the Czech Republic. Plant Disease, 2020, 104, 761-771.	0.7	25
13	Evaluation of longâ€ŧerm protection from nursery to vineyard provided by <i>Trichoderma atroviride</i> SC1 against fungal grapevine trunk pathogens. Pest Management Science, 2020, 76, 967-977.	1.7	42
14	Identification of inoculum sources of Fusicladium eriobotryae in loquat orchards in Spain. European Journal of Plant Pathology, 2020, 156, 425-436.	0.8	0
15	Characterization of Five New Monosporascus Species: Adaptation to Environmental Factors, Pathogenicity to Cucurbits and Sensitivity to Fungicides. Journal of Fungi (Basel, Switzerland), 2020, 6, 169.	1.5	3
16	A qPCR-based method for the detection and quantification of the peach powdery mildew (Podosphaera) Tj ETQq	0 0 0 rgBT	· /Qverlock 10
17	Identification and Characterization of Diaporthe spp. Associated with Twig Cankers and Shoot Blight of Almonds in Spain. Agronomy, 2020, 10, 1062.	1.3	20
18	Resistance in melon to <i>Monosporascus cannonballus</i> and <i>M. eutypoides</i> : Fungal pathogens associated with Monosporascus root rot and vine decline. Annals of Applied Biology, 2020, 177, 101-111.	1.3	11

#	Article	IF	CITATIONS
19	Fungal pathogens associated with branch and trunk cankers of nut crops in Iran. European Journal of Plant Pathology, 2020, 157, 327-351.	0.8	38
20	Characterization of adaptability components of Brazilian isolates of Macrophomina pseudophaseolina. Journal of Phytopathology, 2020, 168, 490-499.	0.5	2
21	Temporal Dispersal Patterns of Phaeomoniella chlamydospora, Causal Agent of Petri Disease and Esca, in Vineyards. Phytopathology, 2020, 110, 1216-1225.	1.1	20
22	First Report of Fusarium Wilt of Lettuce Caused by <i>Fusarium oxysporum</i> f. sp. <i>lactucae</i> Race 1 in Spain. Plant Disease, 2020, 104, 1858-1858.	0.7	6
23	First Report of <i>Stromatinia gladioli</i> Causing Neck and Corm Rot of <i>Crocus sativus</i> in Spain. Plant Disease, 2020, 104, 282.	0.7	5
24	PATHOGENICITY OF Macrophomina SPECIES COLLECTED FROM WEEDS IN COWPEA. Revista Caatinga, 2020, 33, 395-401.	0.3	2
25	Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in Algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov European Journal of Plant Pathology, 2019, 154, 887-901.	0.8	18
26	Identification and pathogenicity of <i>Macrophomina</i> species collected from weeds in melon fields in Northeastern Brazil. Journal of Phytopathology, 2019, 167, 326-337.	0.5	20
27	Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico. Plant Pathology, 2019, 68, 930-938.	1.2	3
28	Prevalent weeds collected from cucurbit fields in Northeastern Brazil reveal new species diversity in the genus Monosporascus. Annals of Applied Biology, 2019, 174, 349-363.	1.3	7
29	First Report of Dollar Spot Caused by <i>Clarireedia jacksonii</i> and Brown Ring Patch Caused by <i>Waitea circinata</i> var. <i>circinata</i> on <i>Agrostis stolonifera</i> in Spain. Plant Disease, 2019, 103, 1771-1771.	0.7	3
30	Cotton, cowpea and sesame are alternative crops to cucurbits in soils naturally infested with <i>Monosporascus cannonballus</i> . Journal of Phytopathology, 2018, 166, 396-402.	0.5	4
31	Survey, Identification, and Characterization of Cylindrocarpon-Like Asexual Morphs in Spanish Forest Nurseries. Plant Disease, 2018, 102, 2083-2100.	0.7	12
32	First Report of <i>Fusarium petroliphilum</i> Causing Fruit Rot of Butternut Squash in Spain. Plant Disease, 2018, 102, 1662-1662.	0.7	7
33	High-throughput amplicon sequencing-based analysis of active fungal communities inhabiting grapevine after hot-water treatments reveals unexpectedly high fungal diversity. Fungal Ecology, 2018, 36, 26-38.	0.7	33
34	First Report of <i>Diplodia fraxini</i> Causing Dieback of <i>Fraxinus angustifolia</i> in Spain. Plant Disease, 2018, 102, 2645-2645.	0.7	9
35	First Report of <i>Dactylonectria torresensis</i> Causing Black-Foot Disease on Grapevines in the Czech Republic. Plant Disease, 2018, 102, 2038.	0.7	4
36	<i>Diaporthe</i> diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2018, 40, 135-153.	1.6	107

#	Article	IF	CITATIONS
37	First Report of <i>Ilyonectria robusta</i> Causing Black Foot Disease of Grapevine in Spain. Plant Disease, 2018, 102, 2381-2381.	0.7	5
38	Characterization of Botryosphaeriaceae species associated with diseased loquat (<i>Eriobotrya) Tj ETQq0 0 0 rg</i>	gBT /Qverlo	ock 10 Tf 50 7
39	Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review. Frontiers in Plant Science, 2017, 8, 1496.	1.7	68
40	Phenotypical and Molecular Characterisation of Fusarium circinatum: Correlation with Virulence and Fungicide Sensitivity. Forests, 2017, 8, 458.	0.9	17
41	Evaluation of grapevine rootstocks against soilborne pathogens associated with trunk diseases. Acta Horticulturae, 2016, , 245-250.	0.1	5
42	Phylogeny, distribution and pathogenicity of <i>Lasiodiplodia</i> species associated with dieback of table grape in the main Brazilian exporting region. Plant Pathology, 2016, 65, 92-103.	1.2	40
43	Characterization and Pathogenicity of Botryosphaeriaceae Species Isolated from Almond Trees on the Island of Mallorca (Spain). Plant Disease, 2016, 100, 2483-2491.	0.7	35
44	Soilborne fungal pathogens affecting grapevine rootstocks: current status and future prospects. Acta Horticulturae, 2016, , 235-328.	0.1	3
45	Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain, with description of Cylindrodendrum alicantinum sp. nov European Journal of Plant Pathology, 2016, 145, 103-118.	0.8	18
46	Evaluation of <i><scp>P</scp>inus radiata</i> seed treatments to control <i><scp>F</scp>usarium circinatum</i> : effects on seed emergence and disease incidence. Forest Pathology, 2015, 45, 525-533.	0.5	19
47	Fungal Planet description sheets: 320–370. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2015, 34, 167-266.	1.6	193
48	Detection of Grapevine Fungal Trunk Pathogens on Pruning Shears and Evaluation of Their Potential for Spread of Infection. Plant Disease, 2015, 99, 976-981.	0.7	17
49	A Nested Polymerase Chain Reaction Protocol for <i>in planta</i> Detection of <i>Fusicladium eriobotryae</i> , Causal Agent of Loquat Scab. Journal of Phytopathology, 2015, 163, 415-418.	0.5	2
50	Pathogenicity testing of lesser-known fungal trunk pathogens associated with wood decay of almond trees. European Journal of Plant Pathology, 2015, 143, 607-611.	0.8	16
51	Development and Validation of a Weather-Based Model for Predicting Infection of Loquat Fruit by Fusicladium eriobotryae. PLoS ONE, 2014, 9, e107547.	1.1	5
52	Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea. PLoS ONE, 2014, 9, e110417.	1.1	18
53	Fitness components of Monosporascus cannonballus isolates from northeastern Brazilian melon fields. Tropical Plant Pathology, 2014, 39, 217-223.	0.8	4
54	Evaluation of Fungicides to Control Loquat Scab Caused by Fusicladium eriobotryae. Plant Health Progress, 2014, 15, 88-91.	0.8	3

#	Article	IF	CITATIONS
55	First Report of Alternaria Black Spot of Pomegranate Caused by <i>Alternaria alternata</i> in Spain. Plant Disease, 2014, 98, 689-689.	0.7	15
56	Fungal Planet description sheets: 214–280. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2014, 32, 184-306.	1.6	229
57	Effect of hot-water treatment on grapevine viability, yield components and composition of must. Australian Journal of Grape and Wine Research, 2014, 20, 144-148.	1.0	16
58	Detection and quantification of <i>llyonectria</i> spp. associated with blackâ€foot disease of grapevine in nursery soils using multiplex nested <scp>PCR</scp> and quantitative <scp>PCR</scp> . Plant Pathology, 2014, 63, 316-322.	1.2	35
59	Development and validation of a standard area diagram set to aid assessment of severity of loquat scab on fruit. European Journal of Plant Pathology, 2014, 139, 419.	0.8	10
60	Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology, 2014, 139, 849-861.	0.8	18
61	Complex Molecular Relationship Between Vegetative Compatibility Groups (VCGs) in <i>Verticillium dahliae</i> : VCGs Do Not Always Align with Clonal Lineages. Phytopathology, 2014, 104, 650-659.	1.1	28
62	New Phaeoacremonium species isolated from sandalwood trees in Western Australia. IMA Fungus, 2014, 5, 67-77.	1.7	22
63	First Report of <i>Calosphaeria pulchella</i> Trees in Spain. Plant Disease, 2014, 98, 1008-1008.	0.7	7
64	First Report of <i>Olpidium bornovanus</i> and <i>O. virulentus</i> on Melon in Italy. Plant Disease, 2014, 98, 997-997.	0.7	3
65	First Report of <i>Phaeoacremonium venezuelense</i> Associated with Wood Decay of Apricot Trees in Spain. Plant Disease, 2014, 98, 1001-1001.	0.7	11
66	Evidence for Multiple Introductions and Clonality in Spanish Populations of <i>Fusarium circinatum </i> . Phytopathology, 2013, 103, 851-861.	1.1	51
67	Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 2013, 137, 103-112.	0.8	30
68	Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. European Journal of Plant Pathology, 2013, 136, 291-300.	0.8	25
69	Detection of black-foot and Petri disease pathogens in soils of grapevine nurseries and vineyards using bait plants. Plant and Soil, 2013, 364, 5-13.	1.8	41
70	Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. European Journal of Plant Pathology, 2013, 135, 727-743.	0.8	27
71	<i>Monosporascus eutypoides</i> , a Cause of Root Rot and Vine Decline in Tunisia, and Evidence that <i>M. cannonballus</i> and <i>M. eutypoides</i> Are Distinct Species. Plant Disease, 2013, 97, 737-743.	0.7	18
72	Effect of Environmental Factors on Mycelial Growth and Conidial Germination of <i>Fusicladium eriobotryae</i> , and the Infection of Loquat Leaves. Plant Disease, 2013, 97, 1331-1338.	0.7	14

#	Article	IF	Citations
73	Population structure of Monosporascus cannonballus isolated from melons produced in Northeastern Brazil based on mycelial compatibility groups. Acta Scientiarum - Agronomy, 2013, 35, .	0.6	5
74	Efficacy of hot water treatment to reduce the incidence of Fusarium circinatum on Pinus radiata seeds. Forestry, 2012, 85, 629-635.	1.2	21
75	Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia: Molecular Phylogeny and Evolution of Fungi, 2012, 28, 1-13.	1.6	156
76	Effects of hot-water treatment, post-hot-water-treatment cooling and cold storage on the viability of dormant grafted grapevines under field conditions. Australian Journal of Grape and Wine Research, 2012, 18, 158-163.	1.0	8
77	Identification of Pythium tracheiphilum as the causal agent of vascular necrosis of endive (Cichorium) Tj ETQq1 1	0,784314	1 rgBT /Overl
78	Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 2011, 95, 1040-1055.	0.7	171
79	Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus. Fungal Biology, 2011, 115, 236-244.	1.1	10
80	Co-operational PCR Coupled with Dot Blot Hybridization for the Detection of Phaeomoniella chlamydospora on Infected Grapevine Wood. Journal of Phytopathology, 2011, 159, 247-254.	0.5	15
81	First Report of Pythium indigoferae and P.Âirregulare Associated to Apple Trees Decline in Tunisia. Journal of Phytopathology, 2011, 159, 352-357.	0.5	6
82	Development and application of new molecular markers for analysis of genetic diversity in <i>Verticillium dahliae</i> populations. Plant Pathology, 2011, 60, 866-877.	1.2	16
83	Evaluation of fungicides to control Cylindrocarpon liriodendri and Cylindrocarpon macrodidymum in vitro, and their effect during the rooting phase in the grapevine propagation process. Crop Protection, 2011, 30, 489-494.	1.0	25
84	Evaluation of fungicides to control circular leaf spot of persimmon caused by Mycosphaerella nawae. Crop Protection, 2011, 30, 1461-1468.	1.0	11
85	Evaluation of Vineyard Weeds as Potential Hosts of Black-Foot and Petri Disease Pathogens. Plant Disease, 2011, 95, 803-810.	0.7	43
86	First Report of Damping-Off Caused by <i>Cylindrocarpon pauciseptatum</i> on <i>Pinus radiata</i> in Spain. Plant Disease, 2011, 95, 874-874.	0.7	10
87	First Report of <i>Cylindrocarpon liriodendri</i> on Kiwifruit in Turkey. Plant Disease, 2011, 95, 76-76.	0.7	7
88	Genetic Diversity and Host Range of <i>Verticillium dahliae</i> Isolates from Artichoke and Other Vegetable Crops in Spain. Plant Disease, 2010, 94, 396-404.	0.7	29
89	Verticillium Wilt: A Threat to Artichoke Production. Plant Disease, 2010, 94, 1176-1187.	0.7	26
90	Evaluation of the grapevine nursery propagation process as a source of Phaeoacremonium spp. and Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in rootstock mother vines in Spain. European Journal of Plant Pathology, 2010, 126, 165-174.	0.8	88

#	Article	IF	CITATIONS
91	Effect of hotâ€water treatments <i>in vitro</i> on conidial germination and mycelial growth of grapevine trunk pathogens. Annals of Applied Biology, 2010, 156, 231-241.	1.3	25
92	Analysis of population structure of <i>Rosellinia necatrix</i> on <i>Cyperus esculentus</i> by mycelial compatibility and interâ€simple sequence repeats (ISSR). Plant Pathology, 2010, 59, 179-185.	1.2	15
93	Occurrence of Monosporascus cannon ballusin Watermelon Fields in Tunisia and Factors Associated with Ascospore Density in Soil. Journal of Phytopathology, 2010, 158, 137-142.	0.5	10
94	Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 2010, 61, 512-520.	0.9	43
95	Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 2010, 125, 305-308.	1.7	17
96	First Report of <i>Monosporascus cannonballus</i> on Watermelon in Brazil. Plant Disease, 2010, 94, 278-278.	0.7	12
97	First Report of Circular Leaf Spot of Persimmon Caused by Mycosphaerella nawae in Spain. Plant Disease, 2010, 94, 374-374.	0.7	14
98	NovelPhaeoacremoniumspecies associated with Petri disease and esca of grapevine in Iran and Spain. Mycologia, 2009, 101, 920-929.	0.8	57
99	Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 2009, 113, 16-23.	2.5	42
100	Protectant activity of reduced concentration copper sprays against Alternaria brown spot on $\hat{a} \in \mathbb{T}$ mandarin fruit in Spain. Crop Protection, 2009, 28, 1-6.	1.0	30
101	Effect of hot-water treatments above 50°C on grapevine viability and survival of Petri disease pathogens. Crop Protection, 2009, 28, 280-285.	1.0	43
102	Evaluation of fungicides to control Petri disease pathogens in the grapevine propagation process. Crop Protection, 2009, 28, 1091-1097.	1.0	37
103	A PCRâ€based â€~molecular tool box' for <i>in planta</i> differential detection of <i>Verticillium dahliae</i> vegetative compatibility groups infecting artichoke. Plant Pathology, 2009, 58, 515-526.	1.2	29
104	Characterization of <i>Cylindrocarpon liriodendri</i> Associated with Black Foot Disease of Grapevine in Iran. Journal of Phytopathology, 2009, 157, 642-645.	0.5	16
105	A Multiplex PCR System for the Specific Detection of <i>Cylindrocarpon liriodendri, C. macrodidymum</i> , and <i>C. pauciseptatum</i> from Grapevine. Plant Disease, 2009, 93, 821-825.	0.7	23
106	First Report of Phaeoacremonium parasiticum Causing Petri Disease of Grapevine in Peru. Plant Disease, 2009, 93, 200-200.	0.7	5
107	First Report of Verticillium Wilt of Faba Bean Caused by <i>Verticillium dahliae</i> in Spain. Plant Disease, 2009, 93, 432-432.	0.7	7
108	First Report of <i>Phaeoacremonium inflatipes, P. iranianum</i> , and <i>P. sicilianum</i> Causing Petri Disease of Grapevine in Spain. Plant Disease, 2009, 93, 964-964.	0.7	13

#	Article	IF	CITATIONS
109	Association of dsRNA to Down-Regulation of Perithecial Synthesis in Monosporascus cannonballus. The Open Mycology Journal, 2009, 3, 9-19.	0.8	5
110	Branch cankers on citrus trees in Spain caused by <i>Phytophthora citrophthora</i> . Plant Pathology, 2008, 57, 84-91.	1.2	13
111	Sensitivity of Petri disease pathogens to hotâ€water treatments <i>in vitro</i> i>. Annals of Applied Biology, 2008, 153, 95-103.	1.3	15
112	Comparative Epidemiology of Monosporascus Root Rot and Vine Decline in Muskmelon, Watermelon, and Grafted Watermelon Crops. Plant Disease, 2008, 92, 158-163.	0.7	21
113	Effect of Cauliflower Residue Amendments and Soil Solarization on Verticillium Wilt Control in Artichoke. Plant Disease, 2008, 92, 595-600.	0.7	20
114	First Report of <i>Lasiodiplodia theobromae</i> Associated with Decline of Grapevine Rootstock Mother Plants in Spain. Plant Disease, 2008, 92, 832-832.	0.7	22
115	First Report of <i>Phaeoacremonium scolyti</i> Causing Petri Disease of Grapevine in Spain. Plant Disease, 2008, 92, 836-836.	0.7	14
116	First Report of Canker Disease Caused by <i>Neofusicoccum australe</i> on Eucalyptus and Pistachio in Spain. Plant Disease, 2008, 92, 980-980.	0.7	20
117	Rain Fastness and Persistence of Fungicides for Control of Alternaria Brown Spot of Citrus. Plant Disease, 2007, 91, 393-399.	0.7	52
118	Inoculum Density-Disease Development Relationship in Verticillium Wilt of Artichoke Caused by <i>Verticillium dahliae</i> Plant Disease, 2007, 91, 1131-1136.	0.7	28
119	Characterization of <i>Cylindrocarpon</i> Species Associated with Black Foot Disease of Grapevine in Spain. Plant Disease, 2007, 91, 1187-1193.	0.7	65
120	Controle biol \tilde{A}^3 gico de Monosporascus cannonballus com Chaetomium. Tropical Plant Pathology, 2007, 32, 70-74.	0.3	14
121	Quantification of Monosporascuscannonballus Ascospores in Muskmelon Fields in Eastern Spain. Journal of Phytopathology, 2007, 155, 248-250.	0.5	11
122	Characterization of Fusarium circinatum from Pinus spp. in northern Spain. Mycological Research, 2007, 111, 832-839.	2.5	71
123	First Report of Phaeoacremonium mortoniae Causing Petri Disease of Grapevine in Spain. Plant Disease, 2007, 91, 1206-1206.	0.7	11
124	Genetic and Virulence Diversity in Verticillium dahliae Populations Infecting Artichoke in Eastern-Central Spain. Phytopathology, 2006, 96, 288-298.	1.1	78
125	Occurrence of Fungal Pathogens Associated with Grapevine Nurseries and the Decline of Young Vines in Spain. Journal of Phytopathology, 2006, 154, 598-602.	0.5	67
126	Cylindrocladium pauciramosum causes root and collar rot of Polygala myrtifolia in Spain Plant Pathology, 2006, 55, 298-298.	1.2	8

#	Article	IF	CITATIONS
127	Análisis de Distintos Tipos de Azúcares en el Método de Extracción de Ascosporas de Monosporascus cannonballus en Suelo. Tropical Plant Pathology, 2006, 31, 185-187.	0.3	3
128	Incidence of Verticillium wilt of artichoke in eastern Spain and role of inoculum sources on crop infection. Phytoparasitica, 2005, 33, 397-405.	0.6	19
129	Identification, incidence and characterization of Fusarium proliferatumon ornamental palms in Spain. European Journal of Plant Pathology, 2005, 112, 123-131.	0.8	40
130	Population Dynamics of Monosporascus cannonballus Ascospores in Marsh Soils in Eastern Spain. European Journal of Plant Pathology, 2005, 113 , 357 - 365 .	0.8	16
131	Detection of Races 1 and 2 of Fusarium solani f. sp. cucurbitae and their Distribution in Watermelon Fields in Tunisia. Journal of Phytopathology, 2005, 153, 162-168.	0.5	26
132	Outbreak of Pitch Canker Caused by Fusarium circinatum on Pinus spp. in Northern Spain. Plant Disease, 2005, 89, 1015-1015.	0.7	94
133	Control of Dematophora necatrix on Cyperus esculentus tubers by hot-water treatment. Crop Protection, 2004, 23, 619-623.	1.0	19
134	Laboratory Evaluation of Citrus Cultivars Susceptibility and Influence of Fruit Size on Fortune Mandarin to Infection by Alternaria alternata pv. citri. European Journal of Plant Pathology, 2004, 110, 245-251.	0.8	31
135	First Report of Monosporascus cannonballus on Melon in Brazil. Plant Disease, 2004, 88, 84-84.	0.7	10
136	IMPORTANCE OF VERTICILLIUM WILT OF ARTICHOKES IN EASTERN SPAIN. Acta Horticulturae, 2004, , 507-509.	0.1	2
137	Identification, occurrence and pathogenicity of Rhizopycnis vagum on muskmelon in Spain. Plant Pathology, 2003, 52, 68-73.	1.2	15
138	Comportamento de cultivares de meloeiro e melancia inoculados com Acremonium cucurbitacearum e Monosporascus cannonballus. Tropical Plant Pathology, 2002, 27, 206-210.	0.3	6
139	Assessment of Virulence of Acremonium cucurbitacearum and Monosporascus cannonballus on Cucumis melo. Plant Disease, 2000, 84, 907-913.	0.7	26
140	Fungal pathogens associated with melon collapse in Spain. EPPO Bulletin, 2000, 30, 169-173.	0.6	42
141	Fusarium solani f. sp. cucurbitae race 1, a potential pathogen of grafted watermelon production in Spain. EPPO Bulletin, 2000, 30, 179-183.	0.6	20
142	Escuela Tecnica Superior de Ingenieros Agronomos (ETSIA). Universidad Politecnica de Valencia, Spain. Journal of Phytopathology, 1999, 147, 737-741.	0.5	3
143	Host range of <i>Acremonium cucurbitacearum</i> , cause of Acremonium collapse of muskmelon. Plant Pathology, 1998, 47, 29-35.	1.2	19
144	A Tuber Rot of Cyperus esculentus Caused by Rosellinia necatrix. Plant Disease, 1998, 82, 1281-1281.	0.7	6

#	Article	IF	CITATIONS
145	First Report of Fusarium solani f. sp. cucurbitae Race 1 in Spain. Plant Disease, 1997, 81, 1216-1216.	0.7	8
146	The taxonomic position of the causal agent of acremonium collapse of muskmelon. Mycologia, 1996, 88, 804-808.	0.8	23