Haim H Bau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9007725/publications.pdf Version: 2024-02-01

HAIM H RALL

#	Article	IF	CITATIONS
1	Programmable endonuclease combined with isothermal polymerase amplification to selectively enrich for rare mutant allele fractions. Chinese Chemical Letters, 2022, 33, 4126-4132.	9.0	5
2	Sensitive, Single-Pot, Two-Stage Assay for Hepatitis Viruses. Analytical Chemistry, 2022, 94, 1778-1786.	6.5	6
3	Molecular and pathological characterization of natural co-infection of poultry farms with the recently emerged Leucocytozoon caulleryi and chicken anemia virus in Egypt. Tropical Animal Health and Production, 2022, 54, 91.	1.4	3
4	Manually-operated, slider cassette for multiplexed molecular detection at the point of care. Sensors and Actuators B: Chemical, 2022, 369, 132353.	7.8	3
5	A portable, 3D printed, microfluidic device for multiplexed, real time, molecular detection of the porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus at the point of need. Lab on A Chip, 2021, 21, 1118-1130.	6.0	29
6	Electricity-free chemical heater for isothermal nucleic acid amplification with applications in COVID-19 home testing. Analyst, The, 2021, 146, 4212-4218.	3.5	12
7	Detection of <i>Streptococcus equi</i> subsp. <i>equi</i> in guttural pouch lavage samples using a loopâ€mediated isothermal nucleic acid amplification microfluidic device. Journal of Veterinary Internal Medicine, 2021, 35, 1597-1603.	1.6	8
8	Single- and Two-Stage, Closed-Tube, Point-of-Care, Molecular Detection of SARS-CoV-2. Analytical Chemistry, 2021, 93, 13063-13071.	6.5	37
9	CRISPR Cas9-Mediated Selective Isothermal Amplification for Sensitive Detection of Rare Mutant Alleles. Clinical Chemistry, 2021, 67, 1569-1571.	3.2	8
10	Caenorhabditis elegans exhibits positive gravitaxis. BMC Biology, 2021, 19, 186.	3.8	13
11	Two stage, nested isothermal amplification in a single tube. Analyst, The, 2021, 146, 1311-1319.	3.5	10
12	Molecular Detection of Infectious Laryngotracheitis Virus in Chickens with a Microfluidic Chip. Animals, 2021, 11, 3203.	2.3	2
13	Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics. Nucleic Acids Research, 2020, 48, e19-e19.	14.5	76
14	A closed-tube, single-step, real time, reverse transcription-loop-mediated isothermal amplification assay for infectious bronchitis virus detection in chickens. Journal of Virological Methods, 2020, 284, 113940.	2.1	5
15	In Situ Transmission Electron Microscope Liquid Cell 3D Profile Reconstruction and Analysis of Nanoscale Liquid Water Contact Line Movements. Langmuir, 2019, 35, 16712-16717.	3.5	7
16	Dynamics of intracellular stress-induced tRNA trafficking. Nucleic Acids Research, 2019, 47, 2002-2010.	14.5	14
17	Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Analytical Chemistry, 2018, 90, 4823-4831.	6.5	95
18	A Multifunctional Reactor with Dry-Stored Reagents for Enzymatic Amplification of Nucleic Acids. Analytical Chemistry, 2018, 90, 1209-1216.	6.5	33

#	Article	IF	CITATIONS
19	Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests. Biosensors, 2018, 8, 17.	4.7	63
20	Two-Stage Isothermal Enzymatic Amplification for Concurrent Multiplex Molecular Detection. Clinical Chemistry, 2017, 63, 714-722.	3.2	85
21	Microfluidic "Pouch―Chips for Immunoassays and Nucleic Acid Amplification Tests. Methods in Molecular Biology, 2017, 1572, 467-488.	0.9	4
22	Miniaturized devices for point of care molecular detection of HIV. Lab on A Chip, 2017, 17, 382-394.	6.0	101
23	ls instrument-free molecular detection possible?. Expert Review of Molecular Diagnostics, 2017, 17, 949-951.	3.1	5
24	Nanoscale evolution of interface morphology during electrodeposition. Nature Communications, 2017, 8, 2174.	12.8	44
25	Point-of-Care Molecular Test for Zika Infection. Clinical Laboratory International, 2017, 41, 25-27.	1.0	15
26	Terrain following and applications: <i>Caenorhabditis elegans</i> swims along the floor using a bump and undulate strategy. Journal of the Royal Society Interface, 2016, 13, 20160612.	3.4	10
27	Instrument-Free Point-of-Care Molecular Detection of Zika Virus. Analytical Chemistry, 2016, 88, 7289-7294.	6.5	263
28	Smart cup: A minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors and Actuators B: Chemical, 2016, 229, 232-238.	7.8	148
29	A high-efficiency superhydrophobic plasma separator. Lab on A Chip, 2016, 16, 553-560.	6.0	95
30	Estimation of Nanoscale Current Density Distributions during Electrodeposition. Microscopy and Microanalysis, 2015, 21, 2435-2436.	0.4	2
31	A Reverse Transcription Loop-Mediated Isothermal Amplification Assay Optimized to Detect Multiple HIV Subtypes. PLoS ONE, 2015, 10, e0117852.	2.5	23
32	Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification. Microarrays (Basel, Switzerland), 2015, 4, 474-489.	1.4	12
33	High-throughput, motility-based sorter for microswimmers such as C. elegans. Lab on A Chip, 2015, 15, 2790-2798.	6.0	25
34	Range of Validity of a Simplified Model for Diffuse Charge Dynamics. Electroanalysis, 2015, 27, 473-484.	2.9	0
35	Capacitive charging and desalination dynamics of a packed-bed reactor. Physical Chemistry Chemical Physics, 2015, 17, 7181-7195.	2.8	7
36	A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis). Journal of the Royal Society Interface, 2015, 12, 20150227.	3.4	16

#	Article	IF	CITATIONS
37	Why do worms go against the flow? <i>C. elegans</i> behaviors explained by simple physics. Worm, 2015, 4, e1118606.	1.0	6
38	Microfluidic Devices for Nucleic Acid (NA) Isolation, Isothermal NA Amplification, and Real-Time Detection. Methods in Molecular Biology, 2015, 1256, 15-40.	0.9	37
39	Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics through Solution Chemistry. Nano Letters, 2015, 15, 5314-5320.	9.1	122
40	Carbon nanoelectrodes for single-cell probing. Nanotechnology, 2015, 26, 185101.	2.6	19
41	Propensity of undulatory swimmers, such as worms, to go against the flow. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3606-3611.	7.1	24
42	Carbon Nanopipette Electrodes for Dopamine Detection in <i>Drosophila</i> . Analytical Chemistry, 2015, 87, 3849-3855.	6.5	92
43	Microinjection of fl-tRNA for the Study of tRNA Subcellular Dynamics. Biophysical Journal, 2015, 108, 571a.	0.5	0
44	Molecular Detection of Schistosome Infections with a Disposable Microfluidic Cassette. PLoS Neglected Tropical Diseases, 2015, 9, e0004318.	3.0	22
45	Gait synchronization in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6865-6870.	7.1	38
46	Ellipsoidal particles encapsulated in droplets. Soft Matter, 2014, 10, 4840-4847.	2.7	2
47	Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy. Journal of Physical Chemistry C, 2014, 118, 22373-22382.	3.1	519
48	Bubble and Pattern Formation in Liquid Induced by an Electron Beam. Nano Letters, 2014, 14, 359-364.	9.1	286
49	Electrical detection of cellular penetration during microinjection with carbon nanopipettes. Nanotechnology, 2014, 25, 245102.	2.6	14
50	Radiolysis during Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 1516-1517.	0.4	1
51	Visualization of Active and Passive Control of Morphology during Electrodeposition. Microscopy and Microanalysis, 2014, 20, 1530-1531.	0.4	11
52	Nuclemeter: A Reaction-Diffusion Based Method for Quantifying Nucleic Acids Undergoing Enzymatic Amplification. Scientific Reports, 2014, 4, 7335.	3.3	19
53	Membrane-Based, Sedimentation-Assisted Plasma Separator for Point-of-Care Applications. Analytical Chemistry, 2013, 85, 10463-10470.	6.5	100
54	Orienting Actin Filaments for Directional Motility of Processive Myosin Motors. Nano Letters, 2013, 13, 79-84.	9.1	9

#	Article	IF	CITATIONS
55	Caenorhabditis-in-Drop Array for Monitoring <i>C. elegans</i> Quiescent Behavior. Sleep, 2013, 36, 689-698.	1.1	37
56	A Low-Cost Microfluidic Chip for Rapid Genotyping of Malaria-Transmitting Mosquitoes. PLoS ONE, 2012, 7, e42222.	2.5	43
57	Porous bead-based microfluidic assay: theory and confocal microscope imaging. Microfluidics and Nanofluidics, 2012, 12, 625-637.	2.2	13
58	A self-heating cartridge for molecular diagnostics. Lab on A Chip, 2011, 11, 2686.	6.0	79
59	A membrane-based, high-efficiency, microfluidic debubbler. Lab on A Chip, 2011, 11, 1688.	6.0	64
60	Dielectrophoresis of Caenorhabditis elegans. Lab on A Chip, 2011, 11, 599.	6.0	51
61	An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst, The, 2011, 136, 2069.	3.5	164
62	Pulsating Bead-Based Assay. Analytical Chemistry, 2011, 83, 2858-2861.	6.5	8
63	A portable analyzer for pouch-actuated, immunoassay cassettes. Sensors and Actuators B: Chemical, 2011, 160, 1529-1535.	7.8	30
64	A portable, integrated analyzer for microfluidic – based molecular analysis. Biomedical Microdevices, 2011, 13, 809-817.	2.8	49
65	When MHD-based microfluidics is equivalent to pressure-driven flow. Microfluidics and Nanofluidics, 2011, 10, 287-300.	2.2	32
66	A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves. Microfluidics and Nanofluidics, 2011, 11, 209-220.	2.2	43
67	<i>In situ</i> liquid-cell electron microscopy of colloid aggregation and growth dynamics. Physical Review E, 2011, 83, 061405.	2.1	99
68	An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomedical Microdevices, 2010, 12, 705-719.	2.8	183
69	Microfluidic, bead-based assay: Theory and experiments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 228-236.	2.3	52
70	A 2D analysis of surface roughness for prediction of boiling incipience. International Journal of Heat and Mass Transfer, 2010, 53, 1313-1318.	4.8	10
71	Dispersion in retentive pillar array columns. Journal of Chromatography A, 2010, 1217, 1332-1342.	3.7	39
72	Carbon Nanopipettes for Cell Surgery. Journal of the Association for Laboratory Automation, 2010, 15, 145-151.	2.8	2

#	Article	IF	CITATIONS
73	A large volume, portable, real-time PCR reactor. Lab on A Chip, 2010, 10, 3170.	6.0	46
74	Polymeric microbead arrays for microfluidic applications. Journal of Micromechanics and Microengineering, 2010, 20, 115017.	2.6	42
75	Polarization of Nanorods Submerged in an Electrolyte Solution and Subjected to an ac Electrical Field. Langmuir, 2010, 26, 5412-5420.	3.5	19
76	A PCR reactor with an integrated alumina membrane for nucleic acid isolation. Analyst, The, 2010, 135, 2408.	3.5	53
77	The Nanoaquarium: A Platform for <i>In Situ</i> Transmission Electron Microscopy in Liquid Media. Journal of Microelectromechanical Systems, 2010, 19, 885-894.	2.5	119
78	Fabrication of Nanoscale Nozzle for Electrohydrodynamic (EHD) Inkjet Head and High Precision Patterning by Drop-on-Demand Operation. Journal of Nanoscience and Nanotechnology, 2009, 9, 7298-302.	0.9	13
79	Effects of Deposition Conditions on the Structure and Chemical Properties of Carbon Nanopipettes. Chemical Vapor Deposition, 2009, 15, 204-208.	1.3	21
80	Carbon-based nanoprobes for cell biology. Microfluidics and Nanofluidics, 2009, 7, 439-450.	2.2	15
81	Single bead-based electrochemical biosensor. Biosensors and Bioelectronics, 2009, 25, 809-814.	10.1	10
82	Magneto-hydrodynamics based microfluidics. Mechanics Research Communications, 2009, 36, 10-21.	1.8	176
83	Finger-actuated, self-contained immunoassay cassettes. Biomedical Microdevices, 2009, 11, 1175-1186.	2.8	85
84	The polarization of a nanoparticle surrounded by a thick electric double layer. Journal of Colloid and Interface Science, 2009, 333, 663-671.	9.4	35
85	Cell Electrophysiology with Carbon Nanopipettes. ACS Nano, 2009, 3, 563-568.	14.6	101
86	A disposable, self-contained PCR chip. Lab on A Chip, 2009, 9, 606-612.	6.0	80
87	A timer-actuated immunoassay cassette for detecting molecular markers in oral fluids. Lab on A Chip, 2009, 9, 768-776.	6.0	93
88	An automated, pre-programmed, multiplexed, hydraulic microvalve. Lab on A Chip, 2009, 9, 3594.	6.0	6
89	Using electrical and optical tweezers to facilitate studies of molecular motors. Physical Chemistry Chemical Physics, 2009, 11, 4834.	2.8	18
90	The mechanics of short rod-like molecules in tension. International Journal of Non-Linear Mechanics, 2008, 43, 1056-1063.	2.6	23

#	Article	IF	CITATIONS
91	Effect of Double-Layer Polarization on the Forces That Act on a Nanosized Cylindrical Particle in an ac Electrical Field. Langmuir, 2008, 24, 6050-6059.	3.5	17
92	Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology, 2008, 19, 015101.	2.6	83
93	Carbon nanopipettes characterize calcium release pathways in breast cancer cells. Nanotechnology, 2008, 19, 325102.	2.6	35
94	Electrospray on superhydrophobic nozzles treated with argon and oxygen plasma. Applied Physics Letters, 2008, 92, .	3.3	42
95	Induction and measurement of minute flow rates through nanopipes. Physics of Fluids, 2007, 19, 013603.	4.0	46
96	Microfluidic chaotic stirrer utilizing induced-charge electro-osmosis. Physical Review E, 2007, 75, 066217.	2.1	62
97	On the Effect of Induced Electro-Osmosis on a Cylindrical Particle Next to a Surface. Langmuir, 2007, 23, 4053-4063.	3.5	75
98	Effect of Secondary Flows on Taylorâ^'Aris Dispersion. Analytical Chemistry, 2007, 79, 7792-7798.	6.5	28
99	The Effect of Translocating Cylindrical Particles on the Ionic Current through a Nanopore. Biophysical Journal, 2007, 92, 1164-1177.	0.5	106
100	Confinement and Manipulation of Actin Filaments by Electric Fields. Biophysical Journal, 2007, 93, L42-L44.	0.5	34
101	Rapid Assay Format for Multiplex Detection of Humoral Immune Responses to Infectious Disease Pathogens (HIV, HCV, and TB). Annals of the New York Academy of Sciences, 2007, 1098, 437-445.	3.8	78
102	Development of a Microfluidic Device for Detection of Pathogens in Oral Samples Using Upconverting Phosphor Technology (UPT). Annals of the New York Academy of Sciences, 2007, 1098, 375-388.	3.8	32
103	A Microfluidic System for Saliva-Based Detection of Infectious Diseases. Annals of the New York Academy of Sciences, 2007, 1098, 429-436.	3.8	72
104	Lab-on-a-Chip Technologies for Oral-Based Cancer Screening and Diagnostics: Capabilities, Issues, and Prospects. Annals of the New York Academy of Sciences, 2007, 1098, 467-475.	3.8	32
105	A disposable microfluidic cassette for DNA amplification and detection. Lab on A Chip, 2006, 6, 46-53.	6.0	113
106	Electrochemical reaction with RedOx electrolyte in toroidal conduits in the presence of natural convection. International Journal of Heat and Mass Transfer, 2006, 49, 3968-3976.	4.8	19
107	Theoretical investigation of electro-osmotic flows and chaotic stirring in rectangular cavities. Applied Mathematical Modelling, 2005, 29, 726-753.	4.2	51
108	Analysis of sedimentation biodetectors. Chemical Engineering Science, 2005, 60, 2585-2598.	3.8	7

#	Article	IF	CITATIONS
109	Self-Actuated, Thermo-Responsive Hydrogel Valves for Lab on a Chip. Biomedical Microdevices, 2005, 7, 313-322.	2.8	145
110	Filling Carbon Nanotubes with Particles. Nano Letters, 2005, 5, 873-878.	9.1	118
111	Thermally-actuated, phase change flow control for microfluidic systems. Lab on A Chip, 2005, 5, 1277.	6.0	60
112	Magnetohydrodynamic flow of RedOx electrolyte. Physics of Fluids, 2005, 17, 067105.	4.0	55
113	The dielectrophoresis of cylindrical and spherical particles submerged in shells and in semi-infinite media. Physics of Fluids, 2004, 16, 1217-1228.	4.0	31
114	On the translation of a cylinder in a long tube. Physics of Fluids, 2004, 16, 998-1007.	4.0	8
115	Analysis of lateral flow biodetectors: competitive format. Analytical Biochemistry, 2004, 326, 211-224.	2.4	101
116	Electrophoresis of Concentrically and Eccentrically Positioned Cylindrical Particles in a Long Tube. Langmuir, 2004, 20, 2628-2639.	3.5	57
117	Thermosiphon-Based PCR Reactor:Â Experiment and Modeling. Analytical Chemistry, 2004, 76, 3707-3715.	6.5	90
118	Optical Microscope Study of Liquid Transport in Carbon Nanotubes. Nano Letters, 2004, 4, 2203-2208.	9.1	62
119	A mathematical model of lateral flow bioreactions applied to sandwich assays. Analytical Biochemistry, 2003, 322, 89-98.	2.4	103
120	The kinematics of bend-induced mixing in micro-conduits. International Journal of Heat and Fluid Flow, 2003, 24, 645-656.	2.4	74
121	A magneto-hydrodynamically controlled fluidic network. Sensors and Actuators B: Chemical, 2003, 88, 205-216.	7.8	98
122	Complex magnetohydrodynamic low-Reynolds-number flows. Physical Review E, 2003, 68, 016312.	2.1	24
123	A stirrer for magnetohydrodynamically controlled minute fluidic networks. Physics of Fluids, 2002, 14, 3584-3592.	4.0	56
124	A Chaotic Electroosmotic Stirrer. Analytical Chemistry, 2002, 74, 3616-3625.	6.5	155
125	A magnetohydrodynamic chaotic stirrer. Journal of Fluid Mechanics, 2002, 468, 153-177.	3.4	122
126	Peristaltically induced motion in a closed cavity with two vibrating walls. Physics of Fluids, 2002, 14, 184-197.	4.0	38

#	Article	IF	CITATIONS
127	Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sensors and Actuators A: Physical, 2002, 96, 59-66.	4.1	136
128	A minute magneto hydro dynamic (MHD) mixer. Sensors and Actuators B: Chemical, 2001, 79, 207-215.	7.8	314
129	Control of Marangoni–Bénard convection. International Journal of Heat and Mass Transfer, 1999, 42, 1327-1341.	4.8	70
130	Ceramic microchips for capillary electrophoresis–electrochemistry. Analytical Communications, 1999, 36, 305-307.	2.2	50
131	Optimal and adaptive control of chaotic convection—Theory and experiments. Physics of Fluids, 1999, 11, 1435-1448.	4.0	31
132	Optimization of conduits' shape in micro heat exchangers. International Journal of Heat and Mass Transfer, 1998, 41, 2717-2723.	4.8	68
133	Controlling chaotic convection using neural nets—theory and experiments. Neural Networks, 1998, 11, 557-569.	5.9	26
134	Numerical investigation of the stabilization of the no-motion state of a fluid layer heated from below and cooled from above. Physics of Fluids, 1998, 10, 1597-1610.	4.0	39
135	Thermoacoustic waves in a confined medium. International Journal of Heat and Mass Transfer, 1997, 40, 407-419.	4.8	31
136	Rendering a subcritical Hopf bifurcation supercritical. Journal of Fluid Mechanics, 1996, 317, 91-109.	3.4	58
137	Thermoacoustic waves in a semi-infinite medium. International Journal of Heat and Mass Transfer, 1995, 38, 1329-1345.	4.8	38
138	Pyroelectric anemometry: Theory of operation. Sensors and Actuators A: Physical, 1995, 49, 125-132.	4.1	13
139	Gas flow in micro-channels. Journal of Fluid Mechanics, 1995, 284, 257-274.	3.4	485
140	Feedback control stabilization of the no-motion state of a fluid confined in a horizontal porous layer heated from below. Journal of Fluid Mechanics, 1993, 257, 485.	3.4	65
141	Stabilization of the no-motion state in Rayleigh-Bénard convection through the use of feedback control. Physical Review Letters, 1993, 70, 1795-1798.	7.8	69
142	Bau replies. Physical Review Letters, 1992, 69, 3129-3129.	7.8	1
143	Controlling chaos in a thermal convection loop. Journal of Fluid Mechanics, 1992, 237, 479-498.	3.4	138
144	Analysis of microchannels for integrated cooling. International Journal of Heat and Mass Transfer, 1992, 35, 2465-2474.	4.8	238

#	Article	IF	CITATIONS
145	Thermal convection loop with heating from above. International Journal of Heat and Mass Transfer, 1992, 35, 111-120.	4.8	4
146	Active control of convection. Physics of Fluids A, Fluid Dynamics, 1991, 3, 2859-2865.	1.6	55
147	Controlling a chaotic system. Physical Review Letters, 1991, 66, 1123-1125.	7.8	310
148	The effect of an adjacent viscous fluid on the transmission of torsional stress waves in a submerged waveguide. Journal of the Acoustical Society of America, 1991, 89, 1414-1422.	1.1	35
149	ON CONTROLLING A CHAOTIC SYSTEM. Modern Physics Letters B, 1991, 05, 1489-1497.	1.9	1
150	Torsional Stress Waves in a Circular Cylinder With a Modulated Surface. Journal of Applied Mechanics, Transactions ASME, 1991, 58, 710-715.	2.2	7
151	Instrument for simultaneous measurement of density and viscosity. Review of Scientific Instruments, 1989, 60, 1111-1115.	1.3	48
152	On line, realâ€ŧime densimeter—Theory and optimization. Journal of the Acoustical Society of America, 1989, 85, 432-439.	1.1	30
153	Two-dimensional bifurcation phenomena in thermal convection in horizontal, concentric annuli containing saturated porous media. Journal of Fluid Mechanics, 1988, 187, 267-300.	3.4	54
154	Low Rayleigh number convection in horizontal, eccentric annuli. Physics of Fluids, 1988, 31, 2467-2473.	1.4	17
155	Thermal convection associated with hot/cold pipes buried in a semi-infinite, saturated, porous medium. International Journal of Heat and Mass Transfer, 1987, 30, 263-273.	4.8	17
156	Large Rayleigh number convection in a horizontal, eccentric annulus containing saturated porous media. International Journal of Heat and Mass Transfer, 1986, 29, 703-712.	4.8	27
157	Ultrasonic flow rate measurement of low speed non-isothermal flows. International Communications in Heat and Mass Transfer, 1985, 12, 381-392.	5.6	0
158	Convective heat losses from a pipe buried in a semi-infinite porous medium. International Journal of Heat and Mass Transfer, 1984, 27, 2047-2056.	4.8	35
159	Thermal convection in a horizontal, eccentric annulus containing a saturated porous medium—an extended perturbation expansion. International Journal of Heat and Mass Transfer, 1984, 27, 2277-2287.	4.8	50
160	On the effects of viscous dissipation and pressure work in free convection loops. International Journal of Heat and Mass Transfer, 1983, 26, 727-734.	4.8	11
161	Kelvin–Helmholtz instability for parallel flow in porous media: A linear theory. Physics of Fluids, 1982, 25, 1719.	1.4	42
162	Heat losses from a fluid flowing in a buried pipe. International Journal of Heat and Mass Transfer, 1982, 25, 1621-1629.	4.8	66

#	Article	IF	CITATIONS
163	Temperature distribution in and around a buried heat generating sphere. International Journal of Heat and Mass Transfer, 1982, 25, 1701-1707.	4.8	2
164	Boiling in low-permeability porous materials. International Journal of Heat and Mass Transfer, 1982, 25, 45-55.	4.8	119
165	Thermal convection and boiling in a porous medium. Letters in Heat and Mass Transfer, 1982, 9, 431-441.	0.2	14
166	On the stability and flow reversal of an asymmetrically heated open convection loop. Journal of Fluid Mechanics, 1981, 109, 417-433.	3.4	31
167	Transient and steady behavior of an open, symmetrically-heated, free convection loop. International Journal of Heat and Mass Transfer, 1981, 24, 597-609.	4.8	77
168	Onset of convection in a permeable medium between vertical coaxial cylinders. Physics of Fluids, 1981, 24, 382.	1.4	22
169	Video: Why are Undulatory Swimmers Attracted to Surfaces (Bordertaxis)?. , 0, , .		2