
Jan Jaroszynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9007398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature, 2008, 453, 903-905.	27.8	490
2	A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Superconductor Science and Technology, 2014, 27, 082001.	3.5	457
3	45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 2019, 570, 496-499.	27.8	432
4	High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla. Nature Communications, 2013, 4, 1347.	12.8	186
5	High Field Magnets With HTS Conductors. IEEE Transactions on Applied Superconductivity, 2010, 20, 576-582.	1.7	175
6	Design of a Superconducting 32 T Magnet With REBCO High Field Coils. IEEE Transactions on Applied Superconductivity, 2012, 22, 4300704-4300704.	1.7	173
7	35.4 T field generated using a layer-wound superconducting coil made of (RE)Ba2Cu3O7â^'x (RE = rare) Tj ET	ပြဒ္ဒုဒ္မိ 1 0.7	84314 rg8 150
8	Significant enhancement of upper critical fields by doping and strain in iron-based superconductors. Physical Review B, 2011, 84, .	3.2	135
9	Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd,) Tj ETQ	q1_10.784	-314 rgBT
10	Properties of recent IBAD–MOCVD coated conductors relevant to their high field, low temperature magnet use. Superconductor Science and Technology, 2011, 24, 035001.	3.5	97
11	Iron-chalcogenide FeSe0.5Te0.5 coated superconducting tapes for high field applications. Applied Physics Letters, 2011, 98, .	3.3	88
12	Progress in Performance Improvement and New Research Areas for Cost Reduction of 2G HTS Wires. IEEE Transactions on Applied Superconductivity, 2011, 21, 3049-3054.	1.7	83
13	Universal Behavior of the Resistance Noise across the Metal-Insulator Transition in Silicon Inversion Layers, Physical Review Letters, 2002, 89, 276401 Role of Weak uncorrelated pinning introduced by BaZrO <mml:math< td=""><td>7.8</td><td>76</td></mml:math<>	7.8	76
14	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub> nanorods at low-temperature in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 		

Jan Jaroszynski

#	Article	IF	CITATIONS
19	Engineering current density over 5 kA mm ^{â^'2} at 4.2 K, 14 T in thick film REBCO tapes. Superconductor Science and Technology, 2018, 31, 10LT01.	3.5	49
20	Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field. Superconductor Science and Technology, 2015, 28, 114007.	3.5	42
21	Magnetic-Field Dependence of the Anomalous Noise Behavior in a Two-Dimensional Electron System in Silicon. Physical Review Letters, 2004, 92, 226403.	7.8	40
22	High-field transport properties of a P-doped BaFe2As2 film on technical substrate. Scientific Reports, 2017, 7, 39951.	3.3	38
23	Introduction of the next generation of CORC [®] wires with engineering current density exceeding 650 A mm ^{â^'2} at 12 T based on SuperPower's ReBCO tapes containing substrates of 25 <i>î¼</i> m thickness. Superconductor Science and Technology, 2020, 33, 044001.	3.5	38
24	Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnets. Superconductor Science and Technology, 2020, 33, 02LT01.	3.5	32
25	Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors. Superconductor Science and Technology, 2016, 29, 054006.	3.5	31
26	Pauli Paramagnetism and Landau Level Crossing in a Modulation DopedCdMnTe/CdMgTeQuantum Well. Physical Review Letters, 2002, 88, 186803.	7.8	30
27	High-field phase-diagram of Fe arsenide superconductors. Physica C: Superconductivity and Its Applications, 2009, 469, 566-574.	1.2	30
28	Hole pocket–driven superconductivity and its universal features in the electron-doped cuprates. Science Advances, 2019, 5, eaap7349.	10.3	30
29	A trapped field of 14.3 T in Y–Ba–Cu–O bulk superconductors fabricated by buffer-assisted seeded infiltration and growth. Superconductor Science and Technology, 2018, 31, 125004.	3.5	29
30	In-field critical current performance of 4.0 <i>μ</i> m thick film REBCO conductor with Hf addition at 4.2 K and fields up to 31.2 T. Superconductor Science and Technology, 2020, 33, 07LT03.	3.5	27
31	J e (4.2 K, 31.2 T) beyond 1 kA/mm2 of a ~3.2 μm thick, 20 mol% Zr-added MOCVD REBCO co Scientific Reports, 2017, 7, 6853.	pated cond	ductor.
32	Next-generation highly flexible round REBCO STAR wires with over 580 A mm ^{â^'2} at 4.2 K, 20 T for future compact magnets. Superconductor Science and Technology, 2019, 32, 10LT01.	3.5	24
33	An Experimental and Analytical Study of Periodic and Aperiodic Fluctuations in the Critical Current of Long Coated Conductors. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	17
34	Trapped field potential of commercial Y-Ba-Cu-O bulk superconductors designed for applications. Superconductor Science and Technology, 2020, 33, 095005.	3.5	15
35	Mesoscopic phenomena in diluted magnetic semiconductors. Semiconductor Science and Technology, 1993, 8, S141-S146.	2.0	14
36	In-field critical current and pinning mechanisms at 4.2 K of Zr-added REBCO coated conductors. Superconductor Science and Technology, 2020, 33, 074007.	3.5	14

JAN JAROSZYNSKI

#	Article	IF	CITATIONS
37	Coupling of Mn2+ spins with a 2DEG in quantum Hall regime. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 335-341.	2.7	12
38	Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)–Ba–Cu–O MOCVD Coated Conductors. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	12
39	Universal conductance fluctuations in submicron wires of. Semiconductor Science and Technology, 1996, 11, 1618-1623.	2.0	11
40	Metal - insulator transition in Sb-doped short-period Si/SiGe superlattices. Semiconductor Science and Technology, 1996, 11, 1624-1629.	2.0	9
41	Progress in scale-up of <i>RE</i> BCO STARâ,,¢ wire for canted cosine theta coils and future strategies with enhanced flexibility. Superconductor Science and Technology, 2020, 33, 094001.	3.5	9
42	Microscopic origin of highly enhanced current carrying capabilities of thin NdFeAs(O,F) films. Nanoscale Advances, 2019, 1, 3036-3048.	4.6	8
43	Superior critical current of Symmetric Tape Round (STAR) REBCO wires in ultra-high background fields up to 31.2 T. Superconductor Science and Technology, 2018, 31, 12LT01.	3.5	7
44	Unusual persistence of superconductivity against high magnetic fields in the strongly-correlated iron-chalcogenide film FeTe:Ox. Low Temperature Physics, 2013, 39, 680-684.	0.6	6
45	Prediction of the J _C (B) Behavior of Bi-2212 Wires at High Field. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	6
46	Analysis of local burnout in a sub-scale test coil for the 32 T magnet after spontaneous quenches during fast ramping. Superconductor Science and Technology, 2022, 35, 075009.	3.5	6
47	Geometric dependence of transport and universal behavior in three dimensional carbon nanostructures. Applied Physics Letters, 2016, 109, .	3.3	5
48	Magnetic-field-induced electron localisation in narrow-gap semimagnetic Hg1-xMnxTe. Semiconductor Science and Technology, 1990, 5, S299-S303.	2.0	4
49	Resistively detected EPR of Mn2+ ions coupled to the 2DEG in the quantum Hall regime. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 356-360.	2.7	3
50	A new no-insulation REBCO magnet of 32 T class. Superconductor Science and Technology, 2020, 33, 080501.	3.5	3
51	Two-Fold Reduction of <italic>J</italic> c Anisotropy in FeSe0.5Te0.5 Films Using Low-Energy Proton Irradiation. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-3.	1.7	2
52	Metal-insulator transition in Sb-doped short period superlattices. Solid-State Electronics, 1996, 40, 47-51.	1.4	1
53	Charge-order dynamics in underdoped La1.6â^' <i>x</i> Nd0.4Sr <i>x</i> CuO4 revealed by electric pulses. Applied Physics Letters, 2021, 118, .	3.3	1
54	Magnetoresistance of lodine-Doped CdMnTe/CdMgTe Spin Quantum Wells. Journal of the Korean Physical Society, 2008, 53, 3068-3072.	0.7	1

#	Article	IF	CITATIONS
55	Two-dimensional electron gas coupled to Mn2+ ions: a magneto-optical study of CdMnTe/CdMgTe MDQWs. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 775-778.	2.7	0
56	ELECTRONIC SPINS AND LOCALIZED MAGNETIC MOMENTS IN DILUTE MAGNETIC SEMICONDUCTOR QUANTUM WELLS. International Journal of Modern Physics B, 2004, 18, 3727-3734.	2.0	0
57	Constructing high field magnets is a real tour de force. Superconductor Science and Technology, 2019, 32, 070501.	3.5	0