Martin KubÅ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9007282/publications.pdf Version: 2024-02-01

Μλατιν ΚιιβΔ-

#	Article	IF	CITATIONS
1	Platinum nanoparticles supported on zeolite MWW nanosheets prepared via homogeneous solution route. Catalysis Today, 2022, 390-391, 335-342.	4.4	1
2	Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution. Catalysis Today, 2022, 390-391, 272-280.	4.4	5
3	2D-to-3D zeolite transformation for the preparation of Pd@MWW catalysts with tuneable acidity. Catalysis Today, 2022, 390-391, 109-116.	4.4	6
4	Reactivity of internal vs. external BrÃ,nsted acid sites in nanosponge MFI: H/D exchange kinetic study. Microporous and Mesoporous Materials, 2022, 332, 111717.	4.4	1
5	Adsorption and catalytic study of cyclopentyl methyl ether formation: structure-activity interplay in medium-pore zeolites. Applied Materials Today, 2022, 28, 101505.	4.3	1
6	Nanosponge hierarchical micro-mesoporous MFI zeolites as a high-performance catalyst for the hydroamination of methyl acrylate with aniline. Microporous and Mesoporous Materials, 2022, , 112087.	4.4	3
7	Imidazolium-type ionic liquid-assisted formation of the MFI zeolite loaded with metal nanoparticles for hydrogenation reactions. Chemical Engineering Journal, 2021, 412, 128599.	12.7	11
8	The Role of Water Loading and Germanium Content in Germanosilicate Hydrolysis. Journal of Physical Chemistry C, 2021, 125, 23744-23757.	3.1	12
9	Gas-phase isomerisation of m-xylene on isoreticular zeolites with tuneable porosity. Catalysis Today, 2021, , .	4.4	5
10	Structural transformation and chemical modifications of the unusual layered zeolite MWW form SSZ-70. Catalysis Today, 2020, 354, 133-140.	4.4	11
11	Electronic/steric effects in hydrogenation of nitroarenes over the heterogeneous Pd@BEA and Pd@MWW catalysts. Catalysis Today, 2020, 345, 39-47.	4.4	11
12	10-ring Zeolites: Synthesis, characterization and catalytic applications. Catalysis Today, 2019, 324, 3-14.	4.4	23
13	Synthesis of Pt-MWW with controllable nanoparticle size. Catalysis Today, 2019, 324, 135-143.	4.4	17
14	Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous and Mesoporous Materials, 2019, 279, 364-370.	4.4	31
15	The BrÃ,nsted acidity of three- and two-dimensional zeolites. Microporous and Mesoporous Materials, 2019, 282, 121-132.	4.4	21
16	H/D reactivity and acidity of BrÃ,nsted acid sites of MWW zeolites: Comparison with MFI zeolite. Applied Catalysis A: General, 2019, 575, 180-186.	4.3	10
17	α-Pinene oxide isomerization: role of zeolite structure and acidity in the selective synthesis of campholenic aldehyde. Catalysis Science and Technology, 2018, 8, 2488-2501.	4.1	22
18	Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem, 2018, 10, 2536-2540.	3.7	25

Martin KubÅ⁻

#	Article	IF	CITATIONS
19	Pillaring of layered zeolite precursors with ferrierite topology leading to unusual molecular sieves on the micro/mesoporous border. Dalton Transactions, 2018, 47, 3029-3037.	3.3	16
20	Homo―and Copolycyclotrimerization of Aromatic Internal Diynes Catalyzed with Co ₂ (CO) ₈ : A Facile Route to Microporous Photoluminescent Polyphenylenes with Hyperbranched or Crosslinked Architecture. Macromolecular Rapid Communications, 2018, 39, 1700518.	3.9	11
21	Zeolite framework functionalisation by tuneable incorporation of various metals into the IPC-2 zeolite. Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.	6.0	17
22	Catalytic cracking of vacuum gasoil over -SVR, ITH, and MFI zeolites as FCC catalyst additives. Fuel Processing Technology, 2017, 161, 23-32.	7.2	31
23	Accessibility enhancement of TS-1-based catalysts for improving the epoxidation of plant oil-derived substrates. Catalysis Science and Technology, 2016, 6, 7280-7288.	4.1	39
24	The effect of alkylation route on ethyltoluene production over different structural types of zeolites. Chemical Engineering Journal, 2016, 306, 1071-1080.	12.7	13
25	Interconversion of the CDO Layered Precursor ZSM-55 between FER and CDO Frameworks by Controlled Deswelling and Reassembly. Chemistry of Materials, 2016, 28, 3616-3619.	6.7	16
26	Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel, 2016, 167, 226-239.	6.4	67
27	Three-dimensional 10-ring zeolites: The activities in toluene alkylation and disproportionation. Catalysis Today, 2016, 259, 97-106.	4.4	16
28	Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 2087-2096.	2.2	19
29	Alkylation of phenols and acylation 2-methoxynaphthalene over SSZ-33, SSZ-35 and SSZ-42 zeolites. Microporous and Mesoporous Materials, 2015, 210, 133-141.	4.4	9
30	Transformation of analcime into IMF structure during the synthesis of IMF zeolite. Microporous and Mesoporous Materials, 2015, 206, 121-126.	4.4	1
31	A new adsorption isotherm for C5 hydrocarbons on metal–organic framework Cu3(BTC)2. Adsorption, 2015, 21, 99-105.	3.0	7
32	Swelling and Interlayer Chemistry of Layered MWW Zeolites MCM-22 and MCM-56 with High Al Content. Chemistry of Materials, 2015, 27, 4620-4629.	6.7	64
33	Germanosilicate UTL and its rich chemistry of solid-state transformations towards IPC-2 (OKO) zeolite. Catalysis Today, 2015, 243, 23-31.	4.4	13
34	Epoxidation of bulky organic molecules over pillared titanosilicates. Catalysis Today, 2015, 243, 134-140.	4.4	57
35	Desilication of SSZ-33 zeolite – Post-synthesis modification of textural and acidic properties. Catalysis Today, 2015, 243, 46-52.	4.4	11
36	The Assemblyâ€Disassemblyâ€Organizationâ€Reassembly Mechanism for 3Dâ€2Dâ€3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie - International Edition, 2014, 53, 7048-7052.	13.8	62

Martin KubÅ⁻

#	ARTICLE	IF	CITATIONS
37	Synthesis and catalytic properties of titanium containing extra-large pore zeolite CIT-5. Catalysis Today, 2014, 227, 80-86.	4.4	24
38	Modification of textural and acidic properties of -SVR zeolite by desilication. Catalysis Today, 2014, 227, 26-32.	4.4	16
39	Application of quasi-equilibrated thermodesorption of linear and di-branched paraffin molecules for detailed porosity characterization of the mono-layered zeolite MCM-56, in comparison with MCM-22 and ZSM-5. Dalton Transactions, 2014, 43, 10574-10583.	3.3	15
40	Aldol condensation of furfural and acetone on zeolites. Catalysis Today, 2014, 227, 154-162.	4.4	125
41	Catalytic applications and FTIR investigation of zeolite SSZ-33 after isomorphous substitution. Microporous and Mesoporous Materials, 2014, 194, 174-182.	4.4	6
42	Swelling of MCM-56 and MCM-22P with a new medium — surfactant–tetramethylammonium hydroxide mixtures. Catalysis Today, 2013, 204, 8-14.	4.4	51
43	A New Family of Twoâ€Dimensional Zeolites Prepared from the Intermediate Layered Precursor IPCâ€3P Obtained during the Synthesis of TUN Zeolite. Chemistry - A European Journal, 2013, 19, 13937-13945.	3.3	21
44	Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solutions. Catalysis Today, 2012, 179, 35-42.	4.4	55
45	Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 2011, 133, 6130-6133.	13.7	208
46	Post-synthesis modification of TUN zeolite: Textural, acidic and catalytic properties. Catalysis Today, 2011, 168, 63-70.	4.4	17
47	TUN, IMF and -SVR Zeolites; Synthesis, Properties and Acidity. Topics in Catalysis, 2010, 53, 1330-1339.	2.8	18
48	Adsorption of Carbon Dioxide on High-Silica Zeolites with Different Framework Topology. Topics in Catalysis, 2010, 53, 1361-1366.	2.8	30
49	The Effect of Zeolite Structure on the Activity and Selectivity in p-Xylene Alkylation with Isopropyl Alcohol. Catalysis Letters, 2009, 131, 393-400.	2.6	10