
Filip Vanhavere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9006558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk assessment of radiation-induced malignancies based on whole-body equivalent dose estimates for IMRT treatment in the head and neck region. Radiotherapy and Oncology, 1999, 53, 199-203.	0.3	164
2	Experimental design and environmental parameters affect <i>Rhodospirillum rubrum</i> S1H response to space flight. ISME Journal, 2009, 3, 1402-1419.	4.4	52
3	DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS). Journal of Space Weather and Space Climate, 2016, 6, A39.	1.1	49
4	Thermoluminescence dosimetry of electronic components from personal objects. Radiation Measurements, 2009, 44, 620-625.	0.7	48
5	Cosmic Radiation Exposure of Biological Test Systems During the EXPOSE-E Mission. Astrobiology, 2012, 12, 387-392.	1.5	46
6	DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016. Journal of Space Weather and Space Climate, 2017, 7, A8.	1.1	44
7	Photon energy response of LiF:Mg,Ti (MTS) and LiF:Mg,Cu,P (MCP) thermoluminescent detectors: Experimental measurements and microdosimetric modeling. Radiation Physics and Chemistry, 2019, 163, 67-73.	1.4	30
8	Development of a new microdosimetric biological weighting function for the RBE ₁₀ assessment in case of the V79 cell line exposed to ions from ¹ H to ²³⁸ U. Physics in Medicine and Biology, 2020, 65, 235010.	1.6	26
9	Calculation of organ doses in x-ray examinations of premature babies. Medical Physics, 2008, 35, 556-568.	1.6	23
10	The use of a portable electronic device in accident dosimetry. Radiation Protection Dosimetry, 2008, 131, 509-512.	0.4	22
11	Microdosimetric specific energy probability distribution in nanometric targets and its correlation with the efficiency of thermoluminescent detectors exposed to charged particles. Radiation Measurements, 2019, 123, 1-12.	0.7	21
12	A novel methodology to assess linear energy transfer and relative biological effectiveness in proton therapy using pairs of differently doped thermoluminescent detectors. Physics in Medicine and Biology, 2019, 64, 085005.	1.6	21
13	Radiation dose to premature new-borns in the Belgian neonatal intensive care units. Radiation Protection Dosimetry, 2014, 158, 28-35.	0.4	19
14	Experimental validation of Monte Carlo calculations with a voxelized Rando–Alderson phantom: a study on influence parameters. Physics in Medicine and Biology, 2008, 53, 5831-5844.	1.6	18
15	Extremity doses of nuclear medicine personnel: a concern. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 529-532.	3.3	18
16	The influence of the dose assessment method on the LET dependence of the relative luminescence efficiency of LiF:Mg,Ti and LiF:Mg,Cu,P. Radiation Measurements, 2017, 98, 34-40.	0.7	18
17	Low temperature thermoluminescence anomaly of LiF:Mg,Cu,P radiation detectors exposed to 1H and 4He ions. Radiation Measurements, 2018, 119, 155-165.	0.7	18
18	Simulation of image detectors in radiology for determination of scatterâ€toâ€primary ratios using Monte Carlo radiation transport code <scp>MCNP/MCNPX</scp> . Medical Physics, 2010, 37, 2082-2091.	1.6	16

#	Article	IF	CITATIONS
19	Secondary neutrons inside a proton therapy facility: MCNPX simulations compared to measurements performed with a Bonner Sphere Spectrometer and neutron H*(10) monitors. Radiation Measurements, 2017, 99, 25-40.	0.7	16
20	Use of active personal dosimeters in hospitals: EURADOS survey. Journal of Radiological Protection, 2018, 38, 702-715.	0.6	16
21	Out-of-field doses from pediatric craniospinal irradiations using 3D-CRT, IMRT, helical tomotherapy and electron-based therapy. Physics in Medicine and Biology, 2017, 62, 5293-5311.	1.6	15
22	EYE LENS DOSES IN NUCLEAR MEDICINE: A MULTICENTRIC STUDY IN BELGIUM AND POLAND. Radiation Protection Dosimetry, 2016, 170, 297-301.	0.4	14
23	Deconvolution study on the glow curve structure of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescent detectors exposed to 1 H, 4 He and 12 C ion beams. Nuclear Instruments & Methods in Physics Research B, 2017, 407, 222-229.	0.6	14
24	A study of the underestimation of eye lens dose with current eye dosemeters for interventional clinicians wearing lead glasses. Journal of Radiological Protection, 2020, 40, 215-224.	0.6	14
25	RADIATION DOSIMETRY PROPERTIES OF SMARTPHONE CMOS SENSORS. Radiation Protection Dosimetry, 2016, 168, ncv352.	0.4	13
26	Effect of the radiation protective apron on the response of active and passive personal dosemeters used in interventional radiology and cardiology. Journal of Radiological Protection, 2019, 39, 97-112.	0.6	13
27	Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence. Radiation Protection Dosimetry, 2010, 140, 294-299.	0.4	12
28	Effect of protective devices on the radiation dose received by the brains of interventional cardiologists. EuroIntervention, 2018, 13, e1778-e1784.	1.4	12
29	Neutron fluence spectrometry using disk activation. Radiation Measurements, 2009, 44, 72-79.	0.7	11
30	A new method to predict the response of thermoluminescent detectors exposed at different positions within a clinical proton beam. Radiation Measurements, 2020, 133, 106281.	0.7	11
31	MICRODOSIMETRIC MODELING OF THE RELATIVE LUMINESCENCE EFFICIENCY OF LIF:Mg,Cu,P (MCP) DETECTORS EXPOSED TO CHARGED PARTICLES. Radiation Protection Dosimetry, 2019, 183, 172-176.	0.4	10
32	Modeling the radiation-induced cell death in a therapeutic proton beam using thermoluminescent detectors and radiation transport simulations. Physics in Medicine and Biology, 2020, 65, 015008.	1.6	10
33	Microdosimetric characterization of a clinical proton therapy beam: comparison between simulated lineal energy distributions in spherical water targets and experimental measurements with a silicon detector. Physics in Medicine and Biology, 2022, 67, 015006.	1.6	10
34	Validation of an image simulation technique for two computed radiography systems: An application to neonatal imaging. Medical Physics, 2010, 37, 2092-2100.	1.6	9
35	OUT-OF-FIELD DOSES IN CHILDREN TREATED FOR LARGE ARTERIOVENOUS MALFORMATIONS USING HYPOFRACTIONATED GAMMA KNIFE RADIOSURGERY AND INTENSITY-MODULATED RADIATION THERAPY. Radiation Protection Dosimetry, 2018, 181, 100-110.	0.4	9
36	OPTIMIZATION OF A RADIOPHOTOLUMINESCENT GLASS DOSEMETER FOR OCCUPATIONAL EYE LENS DOSIMETRY IN INTERVENTIONAL RADIOLOGY/CARDIOLOGY. Radiation Protection Dosimetry, 2018, 182, 177-183.	0.4	9

#	Article	IF	CITATIONS
37	Diagnostic Reference Levels, Deterministic and Stochastic Risks in Pediatric Interventional Cardiology Procedures. Health Physics, 2020, 118, 85-95.	0.3	9
38	A parametric study of occupational radiation dose in interventional radiology by Monte-Carlo simulations. Physica Medica, 2020, 78, 58-70.	0.4	9
39	Two-dimensional real-time quality assurance dosimetry system using μ-Al2O3:C,Mg radioluminescence films. Physics and Imaging in Radiation Oncology, 2020, 16, 26-32.	1.2	9
40	First steps towards online personal dosimetry using computational methods in interventional radiology: Operator's position tracking and simulation input generation. Radiation Physics and Chemistry, 2020, 171, 108702.	1.4	9
41	MICRODOSIMETRIC MODELING OF THE RELATIVE LUMINESCENCE EFFICIENCY OF LIF:Mg,Ti (MTS) DETECTORS EXPOSED TO CHARGED PARTICLES. Radiation Protection Dosimetry, 2018, 180, 192-195.	0.4	8
42	Uncertainty budget assessment for the calibration of a silicon microdosimeter using the proton edge technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 978, 164449.	0.7	8
43	Development and Validation of the Realistic Anthropomorphic Flexible (RAF) Phantom. Health Physics, 2018, 114, 486-499.	0.3	7
44	DETERMINING THE DOSE RATE DEPENDENCE OF DIFFERENT ACTIVE PERSONAL DOSEMETERS IN STANDARDIZED PULSED AND CONTINUOUS RADIATION FIELDS. Radiation Protection Dosimetry, 2019, 187, 345-352.	0.4	7
45	Results of the EURADOS 2017 intercomparison for whole body neutron dosemeters (IC2017n). Radiation Measurements, 2020, 135, 106364.	0.7	7
46	The effect of different lower detection thresholds in microdosimetric spectra and their mean values. Radiation Measurements, 2021, 146, 106626.	0.7	7
47	Characterisation of neutron fields at Cernavoda NPP. Radiation Protection Dosimetry, 2013, 154, 104-116.	0.4	6
48	Mitigation of the proton-induced low temperature anomaly of LiF:Mg,Cu,P detectors using a post-irradiation pre-readout thermal protocol. Radiation Measurements, 2020, 132, 106233.	0.7	6
40	Comparison between the results of a recently-developed biological weighting function (V79-RBE10) Tj ETQq1 1 C		
49	mammalian cell lines and ions not used for the development of the model. Physics in Medicine and Biology. 2021	1.6	6
50	MEDIRAD formulation of science-based recommendations for medical radiation protection: a stakeholder forum survey. Radioprotection, 2021, 56, 275-285.	0.5	6
51	Al2O3:C optically stimulated luminescence droplets: Characterization and applications in medical beams. Radiation Measurements, 2016, 94, 41-48.	0.7	5
52	Where is the best position to place a dosemeter in order to assess the eye lens dose when lead glasses are used?. Radiation Measurements, 2017, 106, 257-261.	0.7	5
53	Nanoscale calculation of the relative efficiency of 7LiF:Mg,Ti (MTS-7) and 7LiF:Mg,Cu,P (MCP-7) thermoluminescent detectors for measuring electrons and positrons. Journal of Physics: Conference Series, 2020, 1662, 012025.	0.3	5
54	Stress and Radiation Responsiveness. , 2012, , 239-260.		5

#	Article	IF	CITATIONS
55	Image quality assessment using the CD-DISC phantom for vascular radiology and vascular surgery. European Journal of Radiology, 2008, 67, 348-356.	1.2	4
56	The relative efficiency of 7LiF:Mg,Ti (MTS-7) and 7LiF:Mg,Cu,P (MCP-7) thermoluminescent detectors for muons, pions and kaons over a broad energy range (2ÂkeV–1ÂGeV): theoretical calculations using the Microdosimetric d(z) Model. Radiation Physics and Chemistry, 2020, 177, 109096.	1.4	4
57	Characterization of the scattered radiation field around an x-ray tube. Physics in Medicine and Biology, 2011, 56, 2731-2741.	1.6	3
58	Characterisation of neutron fields: challenges in assessing the directional distribution. Radiation Protection Dosimetry, 2014, 161, 335-338.	0.4	3
59	Comparison of thermoluminescent readers exploring different reading protocols for LiF:Mg,Cu,P (MCP-N) detectors. Radiation Measurements, 2019, 121, 61-68.	0.7	3
60	Uncertainty evaluation for organ dose assessment with optically stimulated luminescence measurements on mobile phone resistors after a radiological incident. Radiation Measurements, 2021, 141, 106520.	0.7	3
61	Establishing local workplace field correction factors for neutron personal dosemeters. Radiation Protection Dosimetry, 2014, 161, 307-311.	0.4	2
62	CREATION OF FEMALE COMPUTATIONAL PHANTOMS FOR CALIBRATION OF LUNG COUNTERS. Radiation Protection Dosimetry, 2016, 170, 369-372.	0.4	2
63	INTERNATIONAL CONFERENCE ON INDIVIDUAL MONITORING OF IONISING RADIATION. Radiation Protection Dosimetry, 2016, 170, 1-3.	0.4	2
64	Stress and Radiation Responsiveness. , 2020, , 373-404.		2
65	Validation of organ dose calculations with PyMCGPU-IR in realistic interventional set-ups. Physica Medica, 2022, 93, 29-37.	0.4	2
66	Evaluation of the neutron spectrum and dose assessment around the venus reactor. Radiation Protection Dosimetry, 2005, 115, 76-79.	0.4	1
67	A simulation framework for pre-clinical studies on dose and image quality: concept and first validation. , 2008, , .		1
68	Workshop on 'Dosimetric Issues in the Medical use of Ionising Radiation'. Radiation Protection Dosimetry, 2008, 131, 59-61.	0.4	1
69	A method for evaluating personal dosemeters in workplace with neutron fields. Radiation Protection Dosimetry, 2012, 149, 159-168.	0.4	1
70	DEVELOPMENT, CHARACTERIZATION AND TESTING OF A SIMPLIFIED BONNER SPHERE SYSTEM FOR RAPID NEUTRON FIELD CHARACTERIZATION. Radiation Protection Dosimetry, 2018, 180, 85-88.	0.4	1
71	What Is Worth Knowing in Interventional Practices about Medical Staff Radiation Exposure Monitoring: A Review of Recent Outcomes of EURADOS Working Group 12. Environments - MDPI, 2022, 9, 53.	1.5	1
72	Characterization of a neutron calibration facility at the SCK-CEN. , 1997, , .		0

#	Article	IF	CITATIONS
73	Real-time two dimensional dosimetry using Al2O3:C and Al2O3:C,Mg films. Sensors and Actuators A: Physical, 2021, 318, 112491.	2.0	Ο
74	OUP accepted manuscript. Radiation Protection Dosimetry, 2022, , .	0.4	0
75	An investigation into potential improvements in the design of lead glasses for protecting the eyes of interventional cardiologists. Journal of Radiological Protection, 0, , .	0.6	Ο