Jan L Christian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9006227/publications.pdf

Version: 2024-02-01

331538 345118 2,977 37 21 36 h-index citations g-index papers 41 41 41 3393 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transforming growth factor $\hat{\mathbb{C}}^2$ family biology: From basic mechanisms to roles in development and disease. Developmental Dynamics, 2022, 251, 6-9.	0.8	1
2	A tale of two receptors: Bmp heterodimers recruit two type I receptors but use the kinase activity of only one. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104745118.	3.3	3
3	Analysis of Transforming Growth Factor ß Family Cleavage Products Secreted Into the Blastocoele of Xenopus laevis Embryos. Journal of Visualized Experiments, 2021, , .	0.2	1
4	Tril dampens Nodal signaling through Pellino2- and Traf6-mediated activation of Nedd4l. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104661118.	3.3	4
5	Proteolytic Activation of Bmps: Analysis of Cleavage in Xenopus Oocytes and Embryos. Methods in Molecular Biology, 2019, 1891, 115-133.	0.4	1
6	BMP7 functions predominantly as a heterodimer with BMP2 or BMP4 during mammalian embryogenesis. ELife, 2019, 8, .	2.8	42
7	Fibronectin type III and intracellular domains of Toll-like receptor 4 interactor with leucine-rich repeats (Tril) are required for developmental signaling. Molecular Biology of the Cell, 2018, 29, 523-531.	0.9	2
8	Diverse Non-genetic, Allele-Specific Expression Effects Shape Genetic Architecture at the Cellular Level in the Mammalian Brain. Neuron, 2017, 93, 1094-1109.e7.	3.8	34
9	Tril targets Smad7 for degradation to allow for hematopoietic specification in Xenopus embryos. Development (Cambridge), 2016, 143, 4016-4026.	1.2	4
10	Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. Gene Expression Patterns, 2016, 20, 55-62.	0.3	5
11	The prodomain of BMP4 is necessary and sufficient to generate stable BMP4/7 heterodimers with enhanced bioactivity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2307-16.	3.3	37
12	GATA2 regulates Wnt signaling to promote primitive red blood cell fate. Developmental Biology, 2015, 407, 1-11.	0.9	10
13	Simultaneous rather than ordered cleavage of two sites within the BMP4 prodomain leads to loss of ligand in mice. Development (Cambridge), 2014, 141, 3062-3071.	1,2	15
14	Friend of GATA (FOG) Interacts with the Nucleosome Remodeling and Deacetylase Complex (NuRD) to Support Primitive Erythropoiesis in Xenopus laevis. PLoS ONE, 2012, 7, e29882.	1.1	6
15	Morphogen gradients in development: from form to function. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 3-15.	5.9	70
16	Sortilin Associates with Transforming Growth Factor-Î ² Family Proteins to Enhance Lysosome-mediated Degradation. Journal of Biological Chemistry, 2011, 286, 21876-21885.	1.6	26
17	Manipulation of Gene Function in Xenopus laevis. Methods in Molecular Biology, 2011, 770, 55-75.	0.4	24
18	Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain. Developmental Biology, 2010, 346, 102-112.	0.9	30

#	Article	IF	Citations
19	Site-specific Cleavage of BMP4 by Furin, PC6, and PC7. Journal of Biological Chemistry, 2009, 284, 27157-27166.	1.6	67
20	Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis. Mechanisms of Development, 2009, 126, 117-127.	1.7	45
21	Bone Morphogenetic Protein 4 Regulates Hematopoietic Stem Cell Maintenance in Vivo Blood, 2008, 112, 1399-1399.	0.6	0
22	GATA-2 functions downstream of BMPs and CaM KIV in ectodermal cells during primitive hematopoiesis. Developmental Biology, 2007, 310, 454-469.	0.9	23
23	Mutation of an upstream cleavage site in the BMP4 prodomain leads to tissue-specific loss of activity. Development (Cambridge), 2006, 133, 1933-1942.	1.2	58
24	Ectodermally derived steel/stem cell factor functions non–cell autonomously during primitive erythropoiesis in Xenopus. Blood, 2006, 107, 3114-3121.	0.6	9
25	Regulation of Bone Morphogenetic Protein-4 Activity by Sequence Elements within the Prodomain. Journal of Biological Chemistry, 2006, 281, 34021-34031.	1.6	49
26	Proprotein convertase genes in Xenopus development. Developmental Dynamics, 2005, 233, 1038-1044.	0.8	13
27	XPACE4 is a localized pro-protein convertase required for mesoderm induction and the cleavage of specific TGFÎ ² proteins in Xenopusdevelopment. Development (Cambridge), 2005, 132, 591-602.	1.2	43
28	Cleavages within the Prodomain Direct Intracellular Trafficking and Degradation of Mature Bone Morphogenetic Protein-4. Molecular Biology of the Cell, 2004, 15, 5012-5020.	0.9	90
29	Argosomes: Intracellular Transport Vehicles for Intercellular Signals?. Science Signaling, 2002, 2002, pe13-pe13.	1.6	7
30	Dissection of inhibitory Smad proteins: both N- and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7. Mechanisms of Development, 2001, 100, 251-262.	1.7	30
31	Bone morphogenetic protein function is required for terminal differentiation of the heart but not for early expression of cardiac marker genes. Mechanisms of Development, 2001, 100, 263-273.	1.7	80
32	The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes and Development, 2001, 15, 2797-2802.	2.7	115
33	Can't get no SMADisfaction: Smad proteins as positive and negative regulators of TGF- \hat{l}^2 family signals. BioEssays, 1999, 21, 382-390.	1.2	47
34	Smad6 functions as an intracellular antagonist of some TGF- \hat{l}^2 family members during Xenopusembryogenesis. Genes To Cells, 1998, 3, 387-394.	0.5	73
35	Physical and Functional Interaction of Murine and Xenopus Smad7 with Bone Morphogenetic Protein Receptors and Transforming Growth Factor-Î ² Receptors. Journal of Biological Chemistry, 1998, 273, 25364-25370.	1.6	143
36	Xwnt-8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos. Developmental Biology, 1997, 186, 100-114.	0.9	80

#	Article	IF	CITATIONS
37	Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature, 1997, 389, 631-635.	13.7	1,684