Carsten Warneke

List of Publications by Citations

Source: https://exaly.com/author-pdf/9005979/carsten-warneke-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15,660 118 69 224 h-index g-index citations papers 18,057 234 7.4 5.99 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
224	Measurements of volatile organic compounds in the earth@atmosphere using proton-transfer-reaction mass spectrometry. <i>Mass Spectrometry Reviews</i> , 2007 , 26, 223-57	11	881
223	Global air pollution crossroads over the Mediterranean. <i>Science</i> , 2002 , 298, 794-9	33.3	771
222	Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. <i>Journal of Geophysical Research</i> , 2005 , 110,		590
221	Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	334
220	Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide. <i>Geophysical Research Letters</i> , 1999 , 26, 1161-1164	4.9	264
219	Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. <i>International Journal of Mass Spectrometry</i> , 2003 , 223-224, 365-382	1.9	250
218	Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	249
217	Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 3405-3425	6.8	234
216	Global budget of methanol: Constraints from atmospheric observations. <i>Journal of Geophysical Research</i> , 2005 , 110,		230
215	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1989-2013	6.8	226
214	Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20246-53	11.5	224
213	Determination of urban volatile organic compound emission ratios and comparison with an emissions database. <i>Journal of Geophysical Research</i> , 2007 , 112,		218
212	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2423-2453	6.8	217
211	Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	217
210	Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry. <i>Global Biogeochemical Cycles</i> , 1999 , 13, 9-17	5.9	205
209	Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 89-116	6.8	203
208	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. <i>Journal of Geophysical Research</i> , 2009 , 114,		196

(2008-2003)

207	Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. <i>Journal of Geophysical Research</i> , 2003 , 108,		187
206	High winter ozone pollution from carbonyl photolysis in an oil and gas basin. <i>Nature</i> , 2014 , 514, 351-4	50.4	181
205	Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 11115-1111	36 ^{.8}	173
204	Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. <i>Chemical Reviews</i> , 2017 , 117, 13187-13229	68.1	172
203	Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 2041-2057	4.4	165
202	Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	163
201	Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison. <i>International Journal of Mass Spectrometry</i> , 2001 , 207, 167-182	1.9	162
200	Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere. <i>International Journal of Mass Spectrometry</i> , 2008 , 274, 48-55	1.9	160
199	Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		158
198	Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. <i>Journal of Geophysical Research</i> , 2008 , 113,		158
197	An important contribution to springtime Arctic aerosol from biomass burning in Russia. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	155
196	Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. <i>Journal of Geophysical Research</i> , 2003 , 108,		153
195	Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada. <i>Journal of Geophysical Research</i> , 2006 , 111, n/a-n/a		149
194	Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 3299-3319	6.8	141
193	A large and ubiquitous source of atmospheric formic acid. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6283-6304	6.8	141
192	Organic aerosol formation downwind from the Deepwater Horizon oil spill. <i>Science</i> , 2011 , 331, 1295-9	33.3	138
191	Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry. <i>Journal of Geophysical Research</i> , 2010 , 115,		138
190	New constraints on terrestrial and oceanic sources of atmospheric methanol. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 6887-6905	6.8	136

189	Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8966-71	11.5	133
188	Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 211	9 ⁴ 2439	132
187	Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 981-990	4	131
186	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6191-6215	6.8	124
185	An Atmospheric Chemistry Interpretation of Mass Scans Obtained from a Proton Transfer Mass Spectrometer Flown over the Tropical Rainforest of Surinam. <i>Journal of Atmospheric Chemistry</i> , 2001 , 38, 133-166	3.2	124
184	Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002. <i>Journal of Geophysical Research</i> , 2004 , 109,		122
183	Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13915-139	38 ⁸	121
182	Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 411-429	6.8	119
181	Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3027-3042	6.8	114
180	Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2353-2375	6.8	112
179	Biomass-burning particle measurements: Characteristic composition and chemical processing. Journal of Geophysical Research, 2004 , 109,		110
178	VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS. <i>International Journal of Mass Spectrometry</i> , 2011 , 303, 6-14	1.9	105
177	Isoprene and Its Oxidation Products Methyl Vinyl Ketone, Methacrolein, and Isoprene Related Peroxides Measured Online over the Tropical Rain Forest of Surinam in March 1998. <i>Journal of Atmospheric Chemistry</i> , 2001 , 38, 167-185	3.2	99
176	Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7411-7433	6.8	97
175	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3425	-3442	97
174	Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10223-10236	6.8	94
173	Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2399-2421	6.8	92
172	Formaldehyde production from isoprene oxidation across NO regimes. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2597-2610	6.8	88

Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		84	
Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8955-8971	6.8	84	
Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. <i>Journal of Geophysical Research</i> , 2010 , 115,		83	
Evidence of rapid production of organic acids in an urban air mass. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	81	
Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2007-2025	6.8	81	
Disjunct eddy covariance technique for trace gas flux measurements. <i>Geophysical Research Letters</i> , 2001 , 28, 3139-3142	4.9	79	
Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. <i>Journal of Geophysical Research</i> , 2004 , 109,		76	
Evaluation of a New Reagent-Ion Source and Focusing Ion-Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. <i>Analytical Chemistry</i> , 2018 , 90, 12011-12018	7.8	76	
Biomass burning and anthropogenic sources of CO over New England in the summer 2004. <i>Journal of Geophysical Research</i> , 2006 , 111,		75	
Development of proton-transfer ion trap-mass spectrometry: on-line detection and identification of volatile organic compounds in air. <i>Journal of the American Society for Mass Spectrometry</i> , 2005 , 16, 1316-1324	3.5	75	
Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 739-745	6.8	72	
Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2929-2948	6.8	71	
Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 10977-10988	6.8	71	
Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean. <i>Journal of Geophysical Research</i> , 2004 , 109,		71	
Evaluations of NO_x and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11361-11386	6.8	70	
Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results. <i>Atmospheric Measurement Techniques</i> , 2011 , 4, 2345-2358	4	70	
The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 1589-1608	6.8	67	
High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 9263-9281	6.8	67	
	Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971 Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115, Evidence of rapid production of organic acids in an urban air mass. Geophysical Research Letters, 2011, 38, n/a-n/a Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025 Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 2011, 28, 3139-3142 Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossif fuel combustion versus biomass-burning signatures. Journal of Geophysical Research, 2004, 109, Evaluation of a New Reagent-Ion Source and Focusing Ion-Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2018, 90, 12011-12018 Biomass burning and anthropogenic sources of CO over New England in the summer 2004. Journal of Geophysical Research, 2006, 111, Development of proton-transfer ion trap-mass spectrometry: on-line detection and identification of volatile organic compounds in air. Journal of the American Society for Mass Spectrometry, 2005, 16, 1316-1324 Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmospheric Chemistry and Physics, 2003, 3, 739-745 Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmospheric Chemistry and Physics, 2018, 18, 2929-2948 Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil ang as well pade emissions compared to ambient air composition. Atmospheric Chemistry a	Droducts in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, n/a-n/a Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 8955-8971 Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115, Evidence of rapid production of organic acids in an urban air mass. Geophysical Research Letters, 2011, 38, n/a-n/a Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025 Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 2001, 28, 3139-3142 Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. Journal of Geophysical Research, 2004, 109, Evaluation of a New Reagent-Ion Source and Focusing Ion-Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2013, 90, 12011-12018 Biomass burning and anthropogenic sources of CO over New England in the summer 2004. Journal of Geophysical Research, 2006, 111, Development of proton-transfer ion tran-mass spectrometry: on-line detection and identification of volatile organic compounds in air. Journal of the American Society for Mass Spectrometry, 2005, 16, 1316-1324 Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmospheric Chemistry and Physics, 2003, 3, 739-745 Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmospheric Chemistry and Physics, 2014, 14, 10977-1098 Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 ove	Products in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, n/a-n/a Ozone photochemistry in an oil and natural gas extraction region during winter; simulations of a snow-free season in the Unitah Basin, Utah. Atmospheric Chemistry and Physics, 2013, 13, 895-8971 Biogenic emission measurement and inventories determination of biogenic emissions in the Unitah Basin, Utah. Atmospheric Chemistry and Physics, 2010, 13, 895-8971 Biogenic emission measurement and inventories determination of biogenic emissions in the Geophysical Research Z010, 115, Evidence of rapid production of organic acids in an urban air mass. Geophysical Research Letters, 2011, 138, n/a-n/a Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025 Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 2001, 28, 3139-3142 Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. Journal of Geophysical Research, 2004, 109, Evaluation of a New Reagent-ion Source and Focusing ion-Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2018, 90, 12011-12018 Biomass burning and anthropogenic sources of CO over New England in the summer 2004. Journal of Geophysical Research, 2006, 111, Development of proton-transfer ion trap-mass spectrometry. on-line detection and identification of volatile organic compounds in air. Journal of the American Society for Mass Spectrometry, 2005, 16, 1316-1324 Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmospheric Chemistry and Physics, 2003, 3, 739-745 Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmospheric Chemistry and Physics, 2014, 14, 10971-1098 Gas-phase chemical

153	A measurement of total reactive nitrogen, NOy, together with NOINO, and Olvia cavity ring-down spectroscopy. <i>Environmental Science & Environmental Sc</i>	10.3	66
152	Improved detection limit of the proton-transfer reaction mass spectrometer: on-line monitoring of volatile organic compounds at mixing ratios of a few pptv. <i>Rapid Communications in Mass Spectrometry</i> , 1998 , 12, 871-875	2.2	64
151	Proton transfer reaction mass spectrometry (PTR-MS): propanol in human breath. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1996 , 154, 61-70		64
150	Contribution of human-related sources to indoor volatile organic compounds in a university classroom. <i>Indoor Air</i> , 2016 , 26, 925-938	5.4	63
149	PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit. <i>Postharvest Biology and Technology</i> , 1999 , 17, 143-151	6.2	62
148	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7561-7582	6.8	60
147	Air quality implications of the Deepwater Horizon oil spill. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20280-5	11.5	59
146	An evaluation of real-time air quality forecasts and their urban emissions over eastern Texas during the summer of 2006 Second Texas Air Quality Study field study. <i>Journal of Geophysical Research</i> , 2009 , 114,		59
145	Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 270-278	4.7	59
144	A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H₃O⁺ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 2735-2752	4	58
143	Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2139-2153	6.8	54
142	Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. <i>International Journal of Mass Spectrometry</i> , 2017 , 421, 71-94	1.9	53
141	The primary and recycling sources of OH during the NACHTT-2011 campaign: HONO as an important OH primary source in the wintertime. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 6886-6896	4.4	53
140	Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds. <i>Atmospheric Measurement Techniques</i> , 2010 , 3, 683-691	4	53
139	and Chemical Transformation 2004: performance, intercomparison, and compound identification.	10.3	53
138	Environmental Science & Description of the POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744	6.8	52
137	Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at volume mixing ratios of a few pptv. <i>Plasma Sources Science and Technology</i> , 1999 , 8, 332-3	338	51
136	Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers. <i>Geophysical Research Letters</i> , 2016 , 43, 9903-9912	4.9	51

135	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 547-567	6.1	50
134	Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy. <i>Environmental Science & Environmental Science & Envi</i>	10.3	50
133	Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 3063-3093	4	50
132	Senescing grass crops as regional sources of reactive volatile organic compounds. <i>Journal of Geophysical Research</i> , 2005 , 110,		48
131	Formaldehyde over the eastern Mediterranean during MINOS: Comparison of airborne in-situ measurements with 3D-model results. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 851-861	6.8	48
130	Emissions of organic carbon and methane from petroleum and dairy operations in California@San Joaquin Valley. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4955-4978	6.8	47
129	Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 2061-2074	6.8	47
128	Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States Iresults from NEAQS. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 3231-3247	6.8	47
127	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC⁴RS: observations of a modest aerosol enhancement aloft. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7085-7102	6.8	46
126	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NOx and VOC Control as Mitigation Strategies. <i>Geophysical Research Letters</i> , 2019 , 46, 4971-4979	4.9	45
125	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1975-1993	6.8	45
124	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14875-14899	6.8	45
123	Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11317-11337	6.8	44
122	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12797-12809	6.8	43
121	Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		43
120	Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6641-6646	11.5	42
119	Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7571-7583	6.8	42
118	Measurements of PANs during the New England Air Quality Study 2002. <i>Journal of Geophysical Research</i> , 2007 , 112,		42

117	Chemical characteristics assigned to trajectory clusters during the MINOS campaign. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 459-468	6.8	42
116	Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. <i>Journal of Geophysical Research</i> , 2008 , 113,		41
115	High Acetone Concentrations throughout the 0½2 km Altitude Range over the Tropical Rainforest in Surinam. <i>Journal of Atmospheric Chemistry</i> , 2001 , 38, 115-132	3.2	41
114	Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production Regions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7725	4.4	39
113	Transition from high- to low-NOx control of night-time oxidation in the southeastern US. <i>Nature Geoscience</i> , 2017 , 10, 490-495	18.3	39
112	Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekday-weekend effect. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 5018-5028	4.4	39
111	Characterization of NOx, SO2, ethene, and propene from industrial emission sources in Houston, Texas. <i>Journal of Geophysical Research</i> , 2010 , 115,		39
110	Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D) from the Application of Personal Care Products in Two North American Cities. <i>Environmental Science & Company</i> , 2018, 52, 5610-5618	10.3	38
109	Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant plumes during Southeast Nexus. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 11,137-11,153	4.4	38
108	Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations. <i>Environmental Science & Environmental Science & Environment</i>	10.3	38
107	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 9849-9861	4.4	38
106	Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. <i>Environmental Science & Environmental Science & Env</i>	10.3	37
105	Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	37
104	Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 627	1 ⁴ 6289	37
103	Emissions of C6t18 aromatic compounds in the United States: Constraints from tall tower and aircraft measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 826-842	4.4	36
102	An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 291-313	4	36
101	Increasing atmospheric burden of ethanol in the United States. <i>Geophysical Research Letters</i> , 2012 , 39,	4.9	36
100	Laboratory studies on secondary organic aerosol formation from crude oil vapors. <i>Environmental Science & Environmental Science & Environmental Amp; Technology</i> , 2013 , 47, 12566-74	10.3	36

(2020-2006)

99	Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 5649-5666	6.8	36
98	Interpretation of volatile organic compound measurements by proton-transfer-reaction mass spectrometry over the deepwater horizon oil spill. <i>International Journal of Mass Spectrometry</i> , 2014 , 358, 43-48	1.9	35
97	Mixing between a stratospheric intrusion and a biomass burning plume. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 4229-4235	6.8	35
96	Evaluation of NO⁺ reagent ion chemistry for online measurements of atmospheric volatile organic compounds. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 2909-2925	4	34
95	Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 5897-5912	6.8	33
94	Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7081-7096	6.8	32
93	Southeast Atmosphere Studies: learning from model-observation syntheses. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2615-2651	6.8	31
92	Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2555-2570	6.8	31
91	New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 1060-1072	4.4	31
90	Secondary organic aerosol (SOA) yields from NO₃ radical + isoprene based on nighttime aircraft power plant plume transects. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11663-	1 ^{6.8} 82	30
89	Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4945-4956	6.8	30
88	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. <i>Environmental Science & Emp: Technology</i> , 2020 , 54, 8568-8579	10.3	29
87	Measurement of Aerosol Organic Compounds Using a Novel Collection/Thermal-Desorption PTR-ITMS Instrument. <i>Aerosol Science and Technology</i> , 2009 , 43, 486-501	3.4	29
86	Inter-comparison between airborne measurements of methanol, acetonitrile and acetone using two differently configured PTR-MS instruments. <i>International Journal of Mass Spectrometry</i> , 2004 , 239, 129-137	1.9	29
85	Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3075-3093	6.8	28
84	Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5727-5741	6.8	27
83	WRF-Chem simulation of NOx and O3 in the L.A. basin during CalNex-2010. <i>Atmospheric Environment</i> , 2013 , 81, 421-432	5.3	27
82	Urban Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic Aerosol Contributions from Volatile Emissions of Emerging Importance. <i>Environmental Science & Environmental Science & Technology</i> 2020, 54, 714-725	10.3	27

81	Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	27
80	PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 411-420	4	25
79	Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H₃O⁺ CIMS (PTR-ToF-MS). <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 2941-2968	4	25
78	Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12441-12454	6.8	25
77	Chemistry of Volatile Organic Compounds in the Los Angeles basin: Nighttime Removal of Alkenes and Determination of Emission Ratios. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 11,84	1 3 -11,8	61 ⁵
76	On the relationship between acetone and carbon monoxide in different air masses. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 1709-1723	6.8	25
75	Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 2298-2319	4.4	24
74	Biomass-burning-derived particles from a wide variety of fuels Part 2: Effects of photochemical aging on particle optical and chemical properties. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8511-85.	3 2 .8	24
73	Volatile organic compound emissions from switchgrass cultivars used as biofuel crops. <i>Atmospheric Environment</i> , 2011 , 45, 3333-3337	5.3	23
72	A study of organic nitrates formation in an urban plume using a Master Chemical Mechanism. <i>Atmospheric Environment</i> , 2008 , 42, 5771-5786	5.3	23
71	Two additional advantages of proton-transfer ion trap mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 133-4	2.2	22
70	Identifying Volatile Chemical Product Tracer Compounds in U.S. Cities. <i>Environmental Science & Technology</i> , 2021 , 55, 188-199	10.3	22
69	Satellite isoprene retrievals constrain emissions and atmospheric oxidation. <i>Nature</i> , 2020 , 585, 225-233	50.4	21
68	Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale. <i>Elementa</i> , 2017 , 5, 1	3.6	20
67	Measurements of hydrogen sulfide (H₂S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 3597-3610	4	20
66	The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8807-8826	6.8	20
65	Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 573-583	6.8	19
64	Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California. <i>Geoscientific Model Development</i> , 2016 , 9, 1959-1976	6.3	19

63	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 9097-9123	6.8	17
62	Nitrous acid formation in a snow-free wintertime polluted rural area. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 1977-1996	6.8	17
61	Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop. <i>Atmospheric Environment</i> , 2013 , 65, 61-68	5.3	17
60	Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 13417-13438	6.8	17
59	Regional variation of the dimethyl sulfide oxidation mechanism in the summertime marine boundary layer in the Gulf of Maine. <i>Journal of Geophysical Research</i> , 2009 , 114,		16
58	Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 4332-4343	10.3	16
57	Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 4385-4397	4.4	14
56	Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 15451-15470	6.8	14
55	Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 2749-2768	4	13
54	Summertime tropospheric ozone enhancement associated with a cold front passage due to stratosphere-to-troposphere transport and biomass burning: Simultaneous ground-based lidar and airborne measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 1293-1311	4.4	12
53	Intercomparison and evaluation of satellite peroxyacetyl nitrate observations in the upper tropospherelbwer stratosphere. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 13541-13559	6.8	12
52	Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2471-2485	6.8	12
51	New constraints on terrestrial and oceanic sources of atmospheric methanol		12
50	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11201-11224	6.8	12
49	Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. <i>Science of the Total Environment</i> , 2017 , 595, 149-158	10.2	11
48	Isotopic characterization of nitrogen oxides (NO_{<i>x</i>}), nitrous acid (HONO), and nitrate (<i>p</i>NO₃<sup>\lambdatterion from laboratory biomass burning during FIREX. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 6303-63	4 317	11
47	Volatile chemical product emissions enhance ozone and modulate urban chemistry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	11
46	Towards a satellite formaldehyde In situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 2019 , 19, 2765-2785	6.8	10

45	Modelled and measured concentrations of peroxy radicals and nitrate radical in the U.S. Gulf Coast region during TexAQS 2006. <i>Journal of Atmospheric Chemistry</i> , 2011 , 68, 331-362	3.2	10
44	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations		10
43	Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area		10
42	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC) project		9
41	Development of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides Emissions. <i>Environmental Science & Emissions</i> , 2018 , 52, 10175-10185	10.3	9
40	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. <i>Environmental Science & Day Technology</i> , 2021 , 55, 10280-10290	10.3	9
39	Role of Criegee Intermediates in Secondary Sulfate Aerosol Formation in Nocturnal Power Plant Plumes in the Southeast US. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 748-759	3.2	8
38	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16293-16317	6.8	8
37	Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States		7
36	Rapid cloud removal of dimethyl sulfide oxidation products limits SO and cloud condensation nuclei production in the marine atmosphere. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
35	Ozone chemistry in western U.S. wildfire plumes. <i>Science Advances</i> , 2021 , 7, eabl3648	14.3	6
34	Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions		6
33	Formaldehyde production from isoprene oxidation across NO _{<i>x</i>} regimes		6
32	Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 1545-1559	4	6
31	Hydrocarbon Removal in Power Plant Plumes Shows Nitrogen Oxide Dependence of Hydroxyl Radicals. <i>Geophysical Research Letters</i> , 2019 , 46, 7752-7760	4.9	5
30	Laboratory measurements of trace gas emissions from biomass burning of fuel types from the Southeastern and Southwestern United States		5
29	The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2020GB006647	5.9	5
28	Revisiting Acetonitrile as Tracer of Biomass Burning in Anthropogenic-Influenced Environments. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL092322	4.9	5

27	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035203	4.4	5
26	Influence of Long-Range Transport of Siberian Biomass Burning at the Mt. Bachelor Observatory during the Spring of 2015. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 2751-2761	4.6	4
25	Importance of secondary sources in the atmospheric budgets of formic and acetic acids		4
24	Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks		4
23	Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area		4
22	Volatile organic compound emissions from solvent- and water-borne coatings Lompositional differences and tracer compound identifications. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6005-602	25.8	4
21	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns		3
20	Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and Southern California (CalNex). <i>Environmental Science & Environmental Science & Envi</i>	10.3	3
19	Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	3
18	Measurements of Total OH Reactivity During CalNex-LA. <i>Journal of Geophysical Research D:</i> Atmospheres, 2021 , 126, e2020JD032988	4.4	3
17	Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 183	19-983	33 ³ 1
16	Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 7929-7957	4	3
15	Impact of high-resolution a priori profiles on satellite-based formaldehyde retrievals. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 7639-7655	6.8	2
14	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	2
13	Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere		2
12	Next-Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution. <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127,	4.4	2
11	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires <i>Environmental Science & Environmental Science &</i>	10.3	2
10	Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results 2011 ,		1

9	Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006		1	
8	Total Observed Organic Carbon (TOOC): A synthesis of North American observations		1	
7	Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States I results from NEAQS		1	
6	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study		1	
5	PTR-QMS vs. PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013		1	
4	Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations		1	
3	Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer		1	
2	Simulating the Weekly Cycle of NOx-VOC-HOx-O3 Photochemical System in the South Coast of California During CalNex-2010 Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 3532-3555	4.4	1	
1	Hydrogen chloride (HCl) at ground sites during CalNex 2010 and insight into its thermodynamic properties <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127, 1-16	4.4	O	