Michel Chignard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9005356/publications.pdf

Version: 2024-02-01

30070 39675 9,177 117 54 94 citations h-index g-index papers 119 119 119 9956 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	CHAC1 Is Differentially Expressed in Normal and Cystic Fibrosis Bronchial Epithelial Cells and Regulates the Inflammatory Response Induced by Pseudomonas aeruginosa. Frontiers in Immunology, 2018, 9, 2823.	4.8	25
2	Human Bronchial Epithelial Cells Inhibit Aspergillus fumigatus Germination of Extracellular Conidia via FleA Recognition. Scientific Reports, 2018, 8, 15699.	3.3	35
3	IRAP+ endosomes restrict TLR9 activation and signaling. Nature Immunology, 2017, 18, 509-518.	14.5	33
4	Targeting host calpain proteases decreases influenza A virus infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L689-L699.	2.9	17
5	Contribution of the Ade Resistance-Nodulation-Cell Division-Type Efflux Pumps to Fitness and Pathogenesis of Acinetobacter baumannii. MBio, 2016, 7, .	4.1	69
6	Normal and Cystic Fibrosis Human Bronchial Epithelial Cells Infected with Pseudomonas aeruginosa Exhibit Distinct Gene Activation Patterns. PLoS ONE, 2015, 10, e0140979.	2.5	22
7	Staphylococcus aureusAdenosine Inhibits sPLA2-IIA–Mediated Host Killing in the Airways. Journal of Immunology, 2015, 194, 5312-5319.	0.8	29
8	Protective Role of LGP2 in Influenza Virus Pathogenesis. Journal of Infectious Diseases, 2014, 210, 214-223.	4.0	29
9	Cytosolic phospholipase A2î± enhances mouse mortality induced by Pseudomonas aeruginosa pulmonary infection via interleukin 6. Biochimie, 2014, 107, 95-104.	2.6	24
10	Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nature Communications, 2014, 5, 5105.	12.8	110
11	Flagellin concentrations in expectorations from cystic fibrosis patients. BMC Pulmonary Medicine, 2014, 14, 100.	2.0	9
12	<i>Pseudomonas aeruginosa</i> Type-3 Secretion System Dampens Host Defense by Exploiting the NLRC4-coupled Inflammasome. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 799-811.	5.6	90
13	Toll-Like Receptor 9 Deficiency Protects Mice against Pseudomonas aeruginosa Lung Infection. PLoS ONE, 2014, 9, e90466.	2.5	30
14	Neutrophil Elastase Degrades Cystic Fibrosis Transmembrane Conductance Regulator via Calpains and Disables Channel Function (i>In Vitro (i>and (i>In Vivo (i)). American Journal of Respiratory and Critical Care Medicine, 2013, 187, 170-179.	5.6	97
15	Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003716.	4.7	110
16	A Soluble Fucose-Specific Lectin from Aspergillus fumigatus Conidia - Structure, Specificity and Possible Role in Fungal Pathogenicity. PLoS ONE, 2013, 8, e83077.	2.5	87
17	Asparagine Endopeptidase Controls Anti-Influenza Virus Immune Responses through TLR7 Activation. PLoS Pathogens, 2012, 8, e1002841.	4.7	55
18	A role for 12R-lipoxygenase in MUC5AC expression by respiratory epithelial cells. European Respiratory Journal, 2012, 40, 714-723.	6.7	10

#	Article	IF	CITATIONS
19	Influenza A Induces the Major Secreted Airway Mucin MUC5AC in a Protease–EGFR–Extracellular Regulated Kinase–Sp1–Dependent Pathway. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 149-157.	2.9	76
20	Toll-like receptor 5 (TLR5), IL- $1\hat{1}^2$ secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1619-1624.	7.1	108
21	A Crucial Role of Flagellin in the Induction of Airway Mucus Production by Pseudomonas aeruginosa. PLoS ONE, 2012, 7, e39888.	2.5	29
22	Modifying the Protease, Antiprotease Pattern by Elafin Overexpression Protects Mice From Colitis. Gastroenterology, 2011, 140, 1272-1282.	1.3	102
23	Elafin Antiprotease Prevents the Development of Colitis in Mice by Inhibiting Two Neutrophil Serine Proteases: Elastase and Proteinase 3. Gastroenterology, 2011, 140, S-518.	1.3	1
24	Increased Proteolytic Activity at Mucosal Surfaces in IBD Patients: A Possible Role for Elafin. Gastroenterology, 2011, 140, S-695.	1.3	2
25	Type II Secretion System of Pseudomonas aeruginosa: In Vivo Evidence of a Significant Role in Death Due to Lung Infection. Journal of Infectious Diseases, 2011, 203, 1369-1377.	4.0	87
26	Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity. PLoS Pathogens, 2011, 7, e1002238.	4.7	61
27	Cytosolic phospholipase A2 $\hat{1}$ ± mediates Pseudomonas aeruginosa LPS-induced airway constriction of CFTR -/- mice. Respiratory Research, 2010, 11, 49.	3.6	11
28	Combined Tlr2 and Tlr4 Deficiency Increases Radiation-Induced Pulmonary Fibrosis in Mice. International Journal of Radiation Oncology Biology Physics, 2010, 77, 1198-1205.	0.8	47
29	<i>Mycobacterium bovis</i> Bacillus Calmette-Guérin Vaccination Mobilizes Innate Myeloid-Derived Suppressor Cells Restraining In Vivo T Cell Priming via IL-1R–Dependent Nitric Oxide Production. Journal of Immunology, 2010, 184, 2038-2047.	0.8	77
30	M1780 Human Intestinal Epithelial Cells: Actors of the Proteolytic Balance of Intestinal Mucosa. Gastroenterology, 2010, 138, S-417-S-418.	1.3	0
31	Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie, 2010, 92, 1608-1617.	2.6	36
32	Toll-Like Receptors 2 and 4 Contribute to Sepsis-Induced Depletion of Spleen Dendritic Cells. Infection and Immunity, 2009, 77, 5651-5658.	2.2	48
33	Galactofuranose attenuates cellular adhesion of <i>Aspergillus fumigatus </i> Microbiology, 2009, 11, 1612-1623.	2.1	87
34	The innate immune response to Aspergillus fumigatus. Microbes and Infection, 2009, 11, 919-927.	1.9	184
35	Lack of MyD88 Protects the Immunodeficient Host Against Fatal Lung Inflammation Triggered by the Opportunistic Bacteria <i>Burkholderia cenocepacia</i> . Journal of Immunology, 2009, 183, 670-676.	0.8	22
36	Pseudomonas aeruginosa LPS or Flagellin Are Sufficient to Activate TLR-Dependent Signaling in Murine Alveolar Macrophages and Airway Epithelial Cells. PLoS ONE, 2009, 4, e7259.	2.5	140

#	Article	IF	CITATIONS
37	Study of Human RIG-I Polymorphisms Identifies Two Variants with an Opposite Impact on the Antiviral Immune Response. PLoS ONE, 2009, 4, e7582.	2.5	48
38	TLR 5, but neither TLR2 nor TLR4, is involved in lung epithelial cell response to <i>Burkholderia cenocepacia</i> . FEMS Immunology and Medical Microbiology, 2008, 54, 37-44.	2.7	22
39	Control of <i>Pseudomonas aeruginosa</i> in the Lung Requires the Recognition of Either Lipopolysaccharide or Flagellin. Journal of Immunology, 2008, 181, 586-592.	0.8	106
40	Cutting Edge: Innate Immune Response Triggered by Influenza A Virus Is Negatively Regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-Dependent Pathway. Journal of Immunology, 2008, 180, 2034-2038.	0.8	149
41	Aspergillus fumigatus-induced Interleukin-8 Synthesis by Respiratory Epithelial Cells Is Controlled by the Phosphatidylinositol 3-Kinase, p38 MAPK, and ERK1/2 Pathways and Not by the Toll-like Receptor-MyD88 Pathway. Journal of Biological Chemistry, 2008, 283, 30513-30521.	3.4	90
42	Cutting Edge: Influenza A Virus Activates TLR3-Dependent Inflammatory and RIG-I-Dependent Antiviral Responses in Human Lung Epithelial Cells. Journal of Immunology, 2007, 178, 3368-3372.	0.8	355
43	The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1263-L1272.	2.9	39
44	The Role of Flagellin versus Motility in Acute Lung Disease Caused byPseudomonas aeruginosa. Journal of Infectious Diseases, 2007, 196, 289-296.	4.0	71
45	The <i>Pseudomonas aeruginosa</i> LasB Metalloproteinase Regulates the Human Urokinase-Type Plasminogen Activator Receptor through Domain-Specific Endoproteolysis. Infection and Immunity, 2007, 75, 3848-3858.	2.2	58
46	A critical role for peptidoglycan N-deacetylation in <i>Listeria</i> evasion from the host innate immune system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 997-1002.	7.1	329
47	Nod1 and Nod2 induce CCL5/RANTES through the NFâ€PB pathway. European Journal of Immunology, 2007, 37, 2499-2508.	2.9	75
48	Murine splenocytes produce inflammatory cytokines in a MyD88-dependent response to Bacillus anthracis spores. Cellular Microbiology, 2007, 9, 502-513.	2.1	39
49	Role of Toll-like receptors in lung innate defense against invasive aspergillosis. Distinct impact in immunocompetent and immunocompromized hosts. Clinical Immunology, 2007, 124, 238-243.	3.2	47
50	Neutrophil and Pathogen Proteinases versus Proteinase-Activated Receptor-2 Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 394-398.	2.9	27
51	Detrimental Contribution of the Toll-Like Receptor (TLR)3 to Influenza A Virus–Induced Acute Pneumonia. PLoS Pathogens, 2006, 2, e53.	4.7	447
52	<i>Aspergillus fumigatus</i> Induces Innate Immune Responses in Alveolar Macrophages through the MAPK Pathway Independently of TLR2 and TLR4. Journal of Immunology, 2006, 177, 3994-4001.	0.8	99
53	Differences in Patterns of Infection and Inflammation for Corticosteroid Treatment and Chemotherapy in Experimental Invasive Pulmonary Aspergillosis. Infection and Immunity, 2005, 73, 494-503.	2.2	212
54	TLRs 2 and 4 Are Not Involved in Hypersusceptibility to Acute <i>Pseudomonas aeruginosa</i> Lung Infections. Journal of Immunology, 2005, 175, 3927-3934.	0.8	95

#	Article	IF	CITATIONS
55	Involvement of Toll-Like Receptor 2 in Experimental Invasive Pulmonary Aspergillosis. Infection and Immunity, 2005, 73, 5420-5425.	2.2	103
56	<i>Pseudomonas aeruginosa</i> Elastase Disables Proteinase-Activated Receptor 2 in Respiratory Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 411-419.	2.9	120
57	In Vivo Protective Role of Human Group IIA Phospholipase A2against Experimental Anthrax. Journal of Immunology, 2005, 175, 6786-6791.	0.8	77
58	Bacterial and Host Factors Implicated in Nasal Carriage of Methicillin-Resistant Staphylococcus aureus in Mice. Infection and Immunity, 2005, 73, 1847-1851.	2.2	49
59	Differential TLR Recognition of Leptospiral Lipid A and Lipopolysaccharide in Murine and Human Cells. Journal of Immunology, 2005, 175, 6022-6031.	0.8	181
60	Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-stranded RNA and Influenza A Virus. Journal of Biological Chemistry, 2005, 280, 5571-5580.	3.4	591
61	Proteolytic Regulation of the Urokinase Receptor/CD87 on Monocytic Cells by Neutrophil Elastase and Cathepsin G. Journal of Immunology, 2004, 172, 540-549.	0.8	72
62	Helicobacter pylori Heat Shock Protein 60 Mediates Interleukin-6 Production by Macrophages via a Toll-like Receptor (TLR)-2-, TLR-4-, and Myeloid Differentiation Factor 88-independent Mechanism. Journal of Biological Chemistry, 2004, 279, 245-250.	3.4	151
63	Response of Human Pulmonary Epithelial Cells to Lipopolysaccharide Involves Toll-like Receptor 4 (TLR4)-dependent Signaling Pathways. Journal of Biological Chemistry, 2004, 279, 2712-2718.	3.4	320
64	Plasmin cleaves the juxtamembrane domain and releases truncated species of the urokinase receptor (CD87) from human bronchial epithelial cells. FEBS Letters, 2004, 574, 89-94.	2.8	21
65	Inhibitory Effects of Surfactant Protein A on Surfactant Phospholipid Hydrolysis by Secreted Phospholipases A2. Journal of Immunology, 2003, 171, 995-1000.	0.8	51
66	Lipopolysaccharides fromLegionellaandRhizobiumstimulate mouse bone marrow granulocytes via Toll-like receptor 2. Journal of Cell Science, 2003, 116, 293-302.	2.0	142
67	Proteinase-Activated Receptor-2 and Human Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 339-346.	2.9	122
68	Surfactant Protein A Inhibits Lipopolysaccharide-InducedIn VivoProduction of Interleukin-10 by Mononuclear Phagocytes during Lung Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 347-353.	2.9	25
69	Neutrophil DNA Contributes to the Antielastase Barrier during Acute Lung Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 746-753.	2.9	14
70	Surfactant Protein-A and Phosphatidylglycerol Suppress Type IIA Phospholipase A2 Synthesis via Nuclear Factor-ÎB. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 692-699.	5.6	62
71	Cutting Edge: The Immunostimulatory Activity of the Lung Surfactant Protein-A Involves Toll-Like Receptor 4. Journal of Immunology, 2002, 168, 5989-5992.	0.8	305
72	Leukocyte Elastase Negatively Regulates Stromal Cell-derived Factor-1 (SDF-1)/CXCR4 Binding and Functions by Amino-terminal Processing of SDF-1 and CXCR4. Journal of Biological Chemistry, 2002, 277, 15677-15689.	3.4	189

#	Article	IF	CITATIONS
73	Surfactant Protein A Suppresses Lipopolysaccharide-Induced IL-10 Production by Murine Macrophages. Journal of Immunology, 2001, 166, 6376-6382.	0.8	22
74	Lack of IL-10 synthesis by murine alveolar macrophages upon lipopolysaccharide exposure. Comparison with peritoneal macrophages. Journal of Leukocyte Biology, 2000, 67, 545-552.	3.3	49
75	Phosphoinositide 3-kinase inhibition reverses platelet aggregation triggered by the combination of the neutrophil proteinases elastase and cathepsin G without impairing \hat{l} ±llb \hat{l} 23integrin activation. FEBS Letters, 2000, 484, 184-188.	2.8	14
76	Proteolysis of monocyte CD14 by human leukocyte elastase inhibits lipopolysaccharide-mediated cell activation. Journal of Clinical Investigation, 1999, 103, 1039-1046.	8.2	109
77	Effects of rolipram on cyclic AMP levels in alveolar macrophages and lipopolysaccharide-induced inflammation in mouse lung. British Journal of Pharmacology, 1998, 123, 631-636.	5.4	60
78	Inhibition of Neutrophil Serine Proteinases by Suramin. Journal of Biological Chemistry, 1997, 272, 9950-9955.	3.4	47
79	Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils. Journal of Leukocyte Biology, 1997, 61, 695-702.	3.3	130
80	Specific Inhibition of Thrombin-Induced Cell Activation by the Neutrophil Proteinases Elastase, Cathepsin G, and Proteinase 3: Evidence for Distinct Cleavage Sites Within the Aminoterminal Domain of the Thrombin Receptor. Blood, 1997, 89, 1944-1953.	1.4	112
81	Human Neutrophil Elastase Proteolytically Activates the Platelet Integrin \hat{l} ±Ilb \hat{l} 23 through Cleavage of the Carboxyl Terminus of the \hat{l} ±Ilb Subunit Heavy Chain. Journal of Biological Chemistry, 1997, 272, 11636-11647.	3.4	70
82	Effect of cycloâ€oxygenase inhibitors and modulators of cyclic AMP formation on lipopolysaccharideâ€induced neutrophil infiltration in mouse lung. British Journal of Pharmacology, 1996, 117, 1792-1796.	5.4	97
83	Proteolysis of thrombospondin during cathepsin-G-induced platelet aggregation: functional role of the 165-kDa carboxy-terminal fragment. FEBS Letters, 1996, 386, 82-86.	2.8	34
84	The phospholipase C/protein kinase C pathway is involved in cathepsin G-induced human platelet activation: comparison with thrombin. Biochemical Journal, 1996, 313, 401-408.	3.7	33
85	Inhibition of neutrophil-endothelial cell adhesion by a neutrophil product, cathepsin G. Journal of Leukocyte Biology, 1996, 59, 855-863.	3.3	5
86	Neutrophil-mediated platelet activation: A key role for serine proteinases. General Pharmacology, 1995, 26, 905-910.	0.7	10
87	Proteinases and Cytokines in Neutrophil and Platelet Interactions In Vitro. Possible Relevance to the Adult Respiratory Distress Syndrome. Annals of the New York Academy of Sciences, 1994, 725, 309-322.	3.8	12
88	Modulation by superoxide anions of neutrophil-mediated platelet activation. Biochemical Pharmacology, 1994, 47, 1401-1404.	4.4	6
89	Plasma antiproteinase screen and neutrophil-mediated platelet activation. A major role played by $\hat{l}\pm 1$ antitrypsin. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1224, 433-440.	4.1	10
90	Inhibition by recombinant SLPI and halfâ€SLPI (Asn ⁵⁵ â€Ala ¹⁰⁷) of elastase and cathepsin G activities: consequence for neutrophilâ€platelet cooperation. British Journal of Pharmacology, 1993, 108, 1100-1106.	5.4	28

#	Article	IF	CITATIONS
91	Inhibition by human leukocyte elastase of neutrophil-mediated platelet activation. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1993, 248, 151-155.	0.8	1
92	Activation and damage of cultured airway epithelial cells by human elastase and cathepsin G. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1992, 228, 213-218.	0.8	11
93	Combined activation of platelets by cathepsin G and platelet activating factor, two neutrophil-derived agonists. British Journal of Haematology, 1992, 80, 205-213.	2.5	10
94	Interference of antiâ€inflammatory and antiâ€asthmatic drugs with neutrophilâ€mediated platelet activation: singularity of azelastine. British Journal of Pharmacology, 1991, 103, 1435-1440.	5.4	22
95	Cooperation Between Platelets and Neutrophils for Paf-Acether (Platelet-Activating Factor) Formation. Journal of Leukocyte Biology, 1990, 47, 234-243.	3.3	43
96	Advances in platelet-activating factor research. Trends in Pharmacological Sciences, 1990, 11, 345-346.	8.7	0
97	Effects of PAF-acether and structural analogues on platelet activation and bronchoconstriction in guinea-pigs. European Journal of Pharmacology, 1986, 131, 179-188.	3.5	16
98	Specific inhibition of PAF-acether-induced platelet activation by BN 52021 and comparison with the PAF-acether inhibitors kadsurenone and CV 3988. European Journal of Pharmacology, 1986, 123, 197-205.	3.5	119
99	Effect of PAF-acether antagonists, RP 48740 and BN 52021, on platelet activation and bronchoconstruction induced by PAF-acether and structural analogues in guinea-pig. Prostaglandins, 1985, 30, 699.	1.2	2
100	Role of PAF-Acether and Related Ether-Lipid Metabolism in Platelets. Advances in Experimental Medicine and Biology, 1985, 192, 309-326.	1.6	3
101	Paf-acether formation and arachidonic acid freeing from platelet ether-linked glyceryl-phosphorylcholine. Biochemical and Biophysical Research Communications, 1984, 124, 637-643.	2.1	25
102	Convulxin-induced activation of intact and of thrombin-degranulated rabbit platelets: Specific crossed desensitisation with collagen. European Journal of Pharmacology, 1983, 92, 57-68.	3.5	29
103	Inhibition by sulphinpyrazone of the platelet-dependent bronchoconstriction due to platelet-activating factor (PAF-acether) in the guinea-pig. European Journal of Pharmacology, 1982, 78, 71-79.	3.5	42
104	Non-steroidal anti-inflammatory drugs if combined with anti-histamine and anti-serotonin agents interfere with the bronchial and platelet effects of "platelet-activating factor―(PAF-acether). European Journal of Pharmacology, 1982, 82, 121-130.	3.5	59
105	Release of platelet-activating factor (PAF-acether) and 2-lyso PAF-acether from three cell types. Agents and Actions, 1982, 12, 711-713.	0.7	60
106	BACKGROUND AND PRESENT STATUS OF RESEARCH ON PLATELET-ACTIVATING FACTOR (PAF-ACETHER). Annals of the New York Academy of Sciences, 1981, 370, 119-137.	3.8	323
107	Interference of bromophenacyl bromide with platelet phospholipase A2 activity induced by thrombin and by the ionophore A23187. Thrombosis Research, 1980, 17, 91-102.	1.7	27
108	Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives. European Journal of Pharmacology, 1980, 65, 185-192.	3.5	403

#	Article	IF	CITATIONS
109	Activation of guinea-pig platelets induced by convulxin, a substance extracted from the venom of Crotalus durissus cascavella. European Journal of Pharmacology, 1980, 68, 451-464.	3.5	63
110	L8027 and 1-nonyl-imidazole as non-selective inhibitors of thromboxane synthesis. European Journal of Pharmacology, 1979, 60, 287-297.	3.5	15
111	Why do some \hat{l}^2 adrenergic agonists inhibit generation of thromboxane A2 in incubates of platelets with arachidonic acid?. Biochemical Pharmacology, 1978, 27, 1603-1606.	4.4	1
112	Synthesis of thromboxane A2 by non-aggregating dog platelets challenged with arachidonic acid or with prostaglandin H2. Prostaglandins, 1977, 14, 222-240.	1.2	29
113	Platelet effects of arachidonic acid in dog blood. I. Lack of involvement of cyclo-oxygenase in the in vivo situation. Prostaglandins, 1977, 14, 909-927.	1.2	6
114	Platelet effects of arachidonic acid in dog blood. II. Involvement of cyclo-oxygenase in the in vitro situation. Prostaglandins, 1977, 14, 929-946.	1.2	6
115	Dog platelets fail to aggregate when they form aggregating substances upon stimulation with arachidonic acid. European Journal of Pharmacology, 1976, 38, 7-18.	3.5	57
116	Blockade by metal complexing agents and by catalase of the effects of arachidonic acid on platelets: Relevance to the study of anti-inflammatory mechanisms. European Journal of Pharmacology, 1975, 33, 19-29.	3.5	49
117	Innate Defense against Aspergillus: the Phagocyte. , 0, , 229-238.		3