Somdeep Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/900515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of role of rhizosphere process in bioaccumulation of heavy metals in fine nutritive roots of riparian mangrove species in river Hooghly: Implications to global anthropogenic environmental changes. Marine Pollution Bulletin, 2022, 174, 113157.	2.3	7
2	Differentiating Wild and Apiary Honey by Elemental Profiling: a Case Study from Mangroves of Indian Sundarban. Biological Trace Element Research, 2022, 200, 4550-4569.	1.9	3
3	Spatiotemporal distribution of potentially toxic elements in the lower Gangetic delta and their implications for non-carcinogenic health risk management. Geoscience Letters, 2021, 8, .	1.3	10
4	Ecotoxicological response of potentially toxic metal (PTM) pollution in estuarine mangrove habitat of Indian Sundarban. Journal of Earth System Science, 2021, 130, 1.	0.6	2
5	Assessment of Human Induced Potentially Toxic Metal Aggregation and Decadal Change in Sediment Quality of River Hooghly: Implications to the Usage of Pneumatophores as a Potential Bio-indicator and Phytoremediator. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
6	Chemometric study on the biochemical marker of the manglicolous fungi to illustrate its potentiality as a bio indicator for heavy metal pollution in Indian Sundarbans. Marine Pollution Bulletin, 2021, 173, 113017.	2.3	9
7	Understanding potentially toxic metal (PTM) induced biotic response in two riparian mangrove species Sonneratia caseolaris and Avicennia officinalis along river Hooghly, India: Implications for sustainable sediment quality management. Marine Environmental Research, 2021, 172, 105486.	1.1	6
8	Potentially toxic element and microplastic contamination in the river Hooghly: Implications to better water quality management. Journal of Earth System Science, 2021, 130, 1.	0.6	11
9	Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: Biofabrication, adsorptive dynamics and chemometric modeling study. Journal of Water Process Engineering, 2020, 37, 101426.	2.6	55
10	A preliminary study on upstream migration of mangroves in response to changing environment along River Hooghly, India. Marine Pollution Bulletin, 2020, 151, 110840.	2.3	13
11	Sediment quality, elemental bioaccumulation and antimicrobial properties of mangroves of Indian Sundarban. Environmental Geochemistry and Health, 2019, 41, 275-296.	1.8	13
12	Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India. Environmental Geochemistry and Health, 2019, 41, 53-70.	1.8	28
13	Removal of Pb (II), As (III), and Cr (VI) by nitrogenâ€starved <i>Papiliotrema laurentii</i> strain RY1. Journal of Basic Microbiology, 2019, 59, 1016-1030.	1.8	4
14	Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: Synthesis, adsorption isotherm, kinetics and thermodynamics study. Environmental Nanotechnology, Monitoring and Management, 2019, 12, 100276.	1.7	20
15	Green Synthesis of Iron Oxide Nanoparticles Mediated by Filamentous Fungi Isolated from Sundarban Mangrove Ecosystem, India. BioNanoScience, 2019, 9, 637-651.	1.5	88
16	Elemental geochemistry in acid sulphate soils – A case study from reclaimed islands of Indian Sundarban. Marine Pollution Bulletin, 2019, 138, 501-510.	2.3	17
17	Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India. Marine Pollution Bulletin, 2018, 133, 157-172.	2.3	54
18	Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban. Environmental Monitoring and Assessment, 2017, 189, 221.	1.3	28

Somdeep Ghosh

#	Article	IF	CITATIONS
19	Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary, India. Marine Pollution Bulletin, 2016, 109, 539-549.	2.3	32
20	Green Synthesis, Characterization and Antimicrobial Potential of Sliver Nanoparticles Using Three Mangrove Plants from Indian Sundarban. BioNanoScience, 2015, 5, 162-170.	1.5	18
21	Groundwater Arsenic Contamination in West Bengal: Current Scenario, Effects and Probable Ways of Mitigation. International Letters of Natural Sciences, 0, 13, 45-58.	1.0	15
22	Potentiality Assessment of Fish Scale Biodegradation Using Mangrove Fungi Isolated from Indian Sundarban. International Letters of Natural Sciences, 0, 14, 68-76.	1.0	0