Albert Braeuning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9005038/publications.pdf

Version: 2024-02-01

81 papers 2,464 citations

147801 31 h-index 223800 46 g-index

81 all docs

81 docs citations

81 times ranked 2726 citing authors

#	Article	IF	CITATIONS
1	Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS Journal, 2006, 273, 5051-5061.	4.7	211
2	T-cell factor 4 and \hat{l}^2 -catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology, 2014, 59, 2344-2357.	7.3	137
3	Zonal gene expression in murine liver: Lessons from tumors. Hepatology, 2006, 43, 407-414.	7.3	136
4	Comparative analysis of 3D culture methods on human HepG2 cells. Archives of Toxicology, 2017, 91, 393-406.	4.2	78
5	Inducibility of Drug-Metabolizing Enzymes by Xenobiotics in Mice with Liver-Specific Knockout of <i>Ctnnb1</i> . Drug Metabolism and Disposition, 2009, 37, 1138-1145.	3.3	77
6	Coordinate Regulation of Cytochrome P450 1A1 Expression in Mouse Liver by the Aryl Hydrocarbon Receptor and the \hat{l}^2 -Catenin Pathway. Toxicological Sciences, 2011, 122, 16-25.	3.1	69
7	Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse LiverÂHumanized for ConstitutiveÂAndrostane and Pregnane X Receptors. Toxicological Sciences, 2014, 139, 501-511.	3.1	60
8	Wnt/ \hat{l}^2 -Catenin Signaling Activates and Determines Hepatic Zonal Expression of Glutathione S-Transferases in Mouse Liver. Toxicological Sciences, 2010, 115, 22-33.	3.1	59
9	Tumor formation in liver of conditional Â-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis, 2011, 32, 52-57.	2.8	57
10	Physiologically-based modelling in mice suggests an aggravated loss of clearance capacity after toxic liver damage. Scientific Reports, 2017, 7, 6224.	3.3	57
11	Cross-species analysis of hepatic cytochrome P450 and transport protein expression. Archives of Toxicology, 2021, 95, 117-133.	4.2	57
12	Phenobarbital-Mediated Tumor Promotion in Transgenic Mice with Humanized CAR and PXR. Toxicological Sciences, 2014, 140, 259-270.	3.1	50
13	Adverse Outcome Pathway-Driven Analysis of Liver Steatosis <i>in Vitro</i> : A Case Study with Cyproconazole. Chemical Research in Toxicology, 2018, 31, 784-798.	3.3	49
14	Serum components and activated Haâ€ras antagonize expression of perivenous marker genes stimulated by βâ€catenin signaling in mouse hepatocytes. FEBS Journal, 2007, 274, 4766-4777.	4.7	45
15	An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food and Chemical Toxicology, 2020, 139, 111283.	3.6	43
16	Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines. Archives of Toxicology, 2019, 93, 1311-1322.	4.2	41
17	Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Archives of Toxicology, 2017, 91, 2895-2907.	4.2	39
18	Zonal Gene Expression in Mouse Liver Resembles Expression Patterns of Ha-ras and \hat{l}^2 -Catenin Mutated Hepatomas. Drug Metabolism and Disposition, 2007, 35, 503-507.	3.3	38

#	Article	IF	Citations
19	Paradoxical cytotoxicity of tert-butylhydroquinone in vitro: what kills the untreated cells?. Archives of Toxicology, 2012, 86, 1481-1487.	4.2	38
20	InÂvivo distribution of nanosilver in the rat: The role of ions and de novo-formed secondary particles. Food and Chemical Toxicology, 2016, 97, 327-335.	3.6	38
21	Phenotype and growth behavior of residual \hat{l}^2 -catenin-positive hepatocytes in livers of \hat{l}^2 -catenin-deficient mice. Histochemistry and Cell Biology, 2010, 134, 469-481.	1.7	37
22	Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate toxicity in rat testis. Food and Chemical Toxicology, 2015, 83, 84-92.	3.6	37
23	Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate-induced toxicity in rat kidney. Archives of Toxicology, 2016, 90, 1437-1448.	4.2	37
24	Gender-Specific Interplay of Signaling through \hat{l}^2 -Catenin and CAR in the Regulation of Xenobiotic-Induced Hepatocyte Proliferation. Toxicological Sciences, 2011, 123, 113-122.	3.1	36
25	Regulation of Cytochrome P450 Expression by Ras- and & Dependent Signaling. Current Drug Metabolism, 2009, 10, 138-158.	1.2	35
26	$\hat{l}^2\text{-Catenin}$ as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. Biological Chemistry, 2010, 391, 139-148.	2.5	35
27	The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells, 2020, 9, 1192.	4.1	35
28	Activating and Inhibitory Functions of WNT/ <i>\hat{l}^2</i> -Catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Molecular Pharmacology, 2015, 87, 1013-1020.	2.3	34
29	The azole fungicide tebuconazole affects human CYP1A1 and CYP1A2 expression by an aryl hydrocarbon receptor-dependent pathway. Food and Chemical Toxicology, 2019, 123, 481-491.	3.6	34
30	Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicological Sciences, 2018, 163, 170-181.	3.1	33
31	The pyrrolizidine alkaloid senecionine induces CYP-dependent destruction of sinusoidal endothelial cells and cholestasis in mice. Archives of Toxicology, 2020, 94, 219-229.	4.2	33
32	Inflammation-associated suppression of metabolic gene networks in acute and chronic liver disease. Archives of Toxicology, 2020, 94, 205-217.	4.2	32
33	Signal integration by the CYP1A1 promoter a quantitative study. Nucleic Acids Research, 2015, 43, 5318-5330.	14.5	31
34	Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin – Individual and mixture effects in a 28-day study in female Wistar rats. Food and Chemical Toxicology, 2020, 140, 111306.	3.6	31
35	It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 118, 21-29.	4.3	29
36	Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells. Drug Metabolism and Disposition, 2018, 46, 326-335.	3.3	29

#	Article	IF	Citations
37	The time point of \hat{l}^2 -catenin knockout in hepatocytes determines their response to xenobiotic activation of the constitutive androstane receptor. Toxicology, 2013, 308, 113-121.	4.2	28
38	Proteomic responses of human intestinal Cacoâ€2 cells exposed to silver nanoparticles and ionic silver. Journal of Applied Toxicology, 2016, 36, 404-413.	2.8	27
39	Cooperation of structurally different aryl hydrocarbon receptor agonists and \hat{l}^2 -catenin in the regulation of CYP1A expression. Toxicology, 2014, 325, 31-41.	4.2	26
40	Firefly luciferase inhibition: a widely neglected problem. Archives of Toxicology, 2015, 89, 141-142.	4.2	26
41	Hepatotoxic pyrrolizidine alkaloids induce DNA damage response in rat liver in a 28-day feeding study. Archives of Toxicology, 2020, 94, 1739-1751.	4.2	25
42	Phenotype of single hepatocytes expressing an activated version of \hat{l}^2 -catenin in liver of transgenic mice. Journal of Molecular Histology, 2011, 42, 393-400.	2.2	24
43	Analysis of 3-MCPD- and 3-MCPD dipalmitate-induced proteomic changes in rat liver. Food and Chemical Toxicology, 2015, 86, 374-384.	3.6	24
44	Zonation of heme synthesis enzymes in mouse liver and their regulation by \hat{l}^2 -catenin and Ha-ras. Biological Chemistry, 2010, 391, 1305-13.	2.5	23
45	The nuclear factor ΰB inhibitor (E)-2-fluoro-4′-methoxystilbene inhibits firefly luciferase. Bioscience Reports, 2012, 32, 531-537.	2.4	23
46	Is the question of phenobarbital as potential liver cancer risk factor for humans really resolved?. Archives of Toxicology, 2016, 90, 1525-1526.	4.2	23
47	Liver cell proliferation and tumor promotion by phenobarbital: relevance for humans?. Archives of Toxicology, 2014, 88, 1771-1772.	4.2	22
48	The Glycogen Synthase Kinase Inhibitor 3-(2,4-Dichlorophenyl)-4-(1-methyl-1 <i>H</i> -indol-3-yl)-1 <i>H</i> -pyrrole-2,5-dione (SB216763) Is a Partial Agonist of the Aryl Hydrocarbon Receptor. Drug Metabolism and Disposition, 2009, 37, 1576-1580.	3.3	21
49	Mixture effects of chemicals: The difficulty to choose appropriate mathematical models for appropriate conclusions. Environmental Pollution, 2020, 260, 113953.	7.5	21
50	Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Archives of Toxicology, 2016, 90, 1481-1494.	4.2	19
51	More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells. Archives of Toxicology, 2021, 95, 1397-1411.	4.2	17
52	Comparative Analysis and Functional Characterization of HC-AFW1 Hepatocarcinoma Cells: Cytochrome P450 Expression and Induction by Nuclear Receptor Agonists. Drug Metabolism and Disposition, 2015, 43, 1781-1787.	3.3	15
53	Coordinate regulation of Cyp2e1 by \hat{l}^2 -catenin- and hepatocyte nuclear factor $1\hat{l}$ ±-dependent signaling. Toxicology, 2016, 350-352, 40-48.	4.2	14
54	Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand. Archives of Toxicology, 2018, 92, 3471-3486.	4.2	13

#	Article	IF	Citations
55	Chemically induced mouse liver tumors are resistant to treatment with atorvastatin. BMC Cancer, 2014, 14, 766.	2.6	12
56	Comparative proteomic analysis of silver nanoparticle effects in human liver and intestinal cells. Journal of Applied Toxicology, 2018, 38, 638-648.	2.8	12
57	Combinations of LXR and RXR agonists induce triglyceride accumulation in human HepaRG cells in a synergistic manner. Archives of Toxicology, 2020, 94, 1303-1320.	4.2	11
58	Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food and Chemical Toxicology, 2020, 140, 111297.	3.6	11
59	\hat{l}^2 -catenin signaling, the constitutive androstane receptor and their mutual interactions. Archives of Toxicology, 2020, 94, 3983-3991.	4.2	8
60	Mixture prioritization and testing: the importance of toxicokinetics. Archives of Toxicology, 2021, 95, 1863-1864.	4.2	8
61	Transcriptomics analysis of hepatotoxicity induced by the pesticides imazalil, thiacloprid and clothianidin alone or in binary mixtures in a 28-day study in female Wistar rats. Archives of Toxicology, 2021, 95, 1039-1053.	4.2	8
62	An approach for mixture testing and prioritization based on common kinetic groups. Archives of Toxicology, 2022, 96, 1661-1671.	4.2	8
63	Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice. Biochemical Pharmacology, 2022, 197, 114905.	4.4	7
64	Synergistic effects of \hat{l}^2 -catenin inhibitors and sorafenib in hepatoma cells. Anticancer Research, 2014, 34, 4677-83.	1.1	7
65	Inhibition of \hat{l}^2 -catenin signaling by phenobarbital in hepatoma cells in vitro. Toxicology, 2016, 370, 94-105.	4.2	6
66	Array-based Western-blotting reveals spatial differences in hepatic signaling and metabolism following CAR activation. Archives of Toxicology, 2020, 94, 1265-1278.	4.2	6
67	Use of transcriptomics in hazard identification and next generation risk assessment: A case study with clothianidin. Food and Chemical Toxicology, 2022, 166, 113212.	3.6	6
68	Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis. Toxicology, 2006, 227, 127-135.	4.2	5
69	Interplay of & Catenin with Xenobiotic-Sensing Receptors and its Role in Glutathione S-Transferase Expression. Current Drug Metabolism, 2012, 13, 203-214.	1.2	5
70	Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1. Drug Metabolism and Disposition, 2015, 43, 1727-1733.	3.3	5
71	A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology, 2021, 460, 152892.	4.2	5
72	Transcriptomic effect marker patterns of genotoxins – a comparative study with literature data. Journal of Applied Toxicology, 2020, 40, 448-457.	2.8	5

#	Article	IF	Citations
73	Investigating the in vitro steatotic mixture effects of similarly and dissimilarly acting test compounds using an adverse outcome pathway-based approach. Archives of Toxicology, 2022, 96, 211-229.	4.2	5
74	Disturbance of firefly luciferase-based bioassays by different aluminum species. Analytical Biochemistry, 2016, 504, 27-29.	2.4	4
75	Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver. Toxicology Letters, 2019, 313, 1-10.	0.8	4
76	An eight-compound mixture but not corresponding concentrations of individual chemicals induces triglyceride accumulation in human liver cells. Toxicology, 2021, 459, 152857.	4.2	3
77	Mouse Hepatomas with <i>Ha-ras</i> and <ib-raf< i=""> Mutations Differ in Mitogen-Activated Protein Kinase Signaling and Response to Constitutive Androstane Receptor Activation. Drug Metabolism and Disposition, 2018, 46, 1462-1465.</ib-raf<>	3.3	2
78	Reply:. Hepatology, 2006, 44, 512-513.	7.3	1
79	On the necessity of careful interpretation of omics data. Archives of Toxicology, 2018, 92, 2701-2702.	4.2	1
80	Comparative Analysis of Transcriptional Responses to Genotoxic and Non-Genotoxic Agents in the Blood Cell Model TK6 and the Liver Model HepaRG. International Journal of Molecular Sciences, 2022, 23, 3420.	4.1	1
81	Metabolism of the lipophilic phycotoxin 13-Desmethylspirolide C using human and rat in vitro liver models. Toxicology Letters, 2019, 307, 17-25.	0.8	O