Daniele Mancardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9004855/publications.pdf

Version: 2024-02-01

53 papers

3,229 citations

30 h-index 52 g-index

54 all docs 54 docs citations

54 times ranked 3508 citing authors

#	Article	IF	Citations
1	Gender-specific side effects of chemotherapy in pancreatic cancer patients. Canadian Journal of Physiology and Pharmacology, 2022, 100, 371-377.	0.7	5
2	HNO Protects the Myocardium against Reperfusion Injury, Inhibiting the mPTP Opening via PKCl μ Activation. Antioxidants, 2022, $11,382.$	2.2	6
3	Janus, or the Inevitable Battle Between Too Much and Too Little Oxygen. Antioxidants and Redox Signaling, 2022, 37, 972-989.	2.5	7
4	The Influence of Sex, Gender, and Age on COVID-19 Data in the Piedmont Region (Northwest Italy): The Virus Prefers Men. Life, 2022, 12, 643.	1.1	2
5	Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players?. European Journal of Clinical Investigation, 2021, 51, e13441.	1.7	6
6	H2S Pretreatment Is Promigratory and Decreases Ischemia/Reperfusion Injury in Human Microvascular Endothelial Cells. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	7
7	Iron Overload, Oxidative Stress, and Ferroptosis in the Failing Heart and Liver. Antioxidants, 2021, 10, 1864.	2.2	55
8	Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium. Redox Biology, 2017, 12, 499-504.	3.9	18
9	Novel Perspectives in Redox Biology and Pathophysiology of Failing Myocytes: Modulation of the Intramyocardial Redox Milieu for Therapeutic Interventions—A Review Article from the Working Group of Cardiac Cell Biology, Italian Society of Cardiology. Oxidative Medicine and Cellular Longevity. 2016. 2016. 1-13.	1.9	10
10	Preconditioning cardioprotection and exercise performance: a radical point of view. Sport Sciences for Health, 2015, 11, 137-151.	0.4	6
11	Role of Calcium Channels in the Protective Effect of Hydrogen Sulfide in Rat Cardiomyoblasts. Cellular Physiology and Biochemistry, 2014, 33, 1205-1214.	1.1	33
12	Hydrogen Sulfide and Endothelial Dysfunction: Relationship with Nitric Oxide. Current Medicinal Chemistry, 2014, 21, 3646-3661.	1.2	71
13	Hydrogen sulfide as a regulator of calcium channels. Cell Calcium, 2013, 53, 77-84.	1.1	61
14	Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2012, 162, 1-6.	0.8	39
15	Hydrogen Sulfide Regulates Intracellular Ca2+ Concentration in Endothelial Cells From Excised Rat Aorta. Current Pharmaceutical Biotechnology, 2011, 12, 1416-1426.	0.9	53
16	Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells. Free Radical Biology and Medicine, 2011, 51, 1765-1773.	1.3	83
17	Hypoxia and Anoxia Tolerance of Vertebrate Hearts: An Evolutionary Perspective. Antioxidants and Redox Signaling, 2011, 14, 851-862.	2.5	19
18	Playing with Cardiac "Redox Switches― The "HNO Way―to Modulate Cardiac Function. Antioxidants and Redox Signaling, 2011, 14, 1687-1698.	2.5	101

#	Article	IF	CITATIONS
19	Activated Met Signalling in the Developing Mouse Heart Leads to Cardiac Disease. PLoS ONE, 2011, 6, e14675.	1.1	15
20	Old and New Gasotransmitters in the Cardiovascular System: Focus on the Role of Nitric Oxide and Hydrogen Sulfide in Endothelial Cells and Cardiomyocytes. Current Pharmaceutical Biotechnology, 2011, 12, 1406-1415.	0.9	39
21	Cardioprotection: A radical view. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 781-793.	0.5	176
22	Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 864-872.	0.5	158
23	Postconditioning induces an anti-apoptotic effect and preserves mitochondrial integrity in isolated rat hearts. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 794-801.	0.5	65
24	The emergence of nitroxyl (HNO) as a pharmacological agent. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 835-840.	0.5	114
25	Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Research in Cardiology, 2009, 104, 390-402.	2.5	70
26	Comparing the chemical biology of NO and HNO. Archives of Pharmacal Research, 2009, 32, 1139-1153.	2.7	41
27	Omega 3 has a beneficial effect on ischemia/reperfusion injury, but cannot reverse the effect of stressful forced exercise. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 20-26.	1.1	17
28	Intermittent Adenosine at the Beginning of Reperfusion Does Not Trigger Cardioprotection. Journal of Surgical Research, 2009, 153, 231-238.	0.8	11
29	Postconditioning and intermittent bradykinin induced cardioprotection require cyclooxygenase activation and prostacyclin release during reperfusion. Basic Research in Cardiology, 2008, 103, 368-377.	2.5	63
30	Fractal parameters and vascular networks: facts & Theoretical Biology and Medical Modelling, 2008, 5, 12.	2.1	46
31	Early homing of adult mesenchymal stem cells in normal and infarcted isolated beating hearts. Journal of Cellular and Molecular Medicine, 2008, 12, 507-521.	1.6	25
32	Nitric Oxide Synthase Function in Exercise. Current Enzyme Inhibition, 2008, 4, 37-45.	0.3	0
33	Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovascular Research, 2007, 75, 168-177.	1.8	128
34	Nandrolone-pretreatment enhances cardiac $\hat{1}^2$ 2-adrenoceptor expression and reverses heart contractile down-regulation in the post-stress period of acute-stressed rats. Journal of Steroid Biochemistry and Molecular Biology, 2007, 107, 106-113.	1.2	15
35	Delayed preconditioning-mimetic actions of exercise or nitroglycerin do not affect haemodynamics and exercise performance in trained or sedentary individuals. Journal of Sports Sciences, 2007, 25, 1393-1401.	1.0	11
36	Effect of endothelins on the cardiovascular system. Journal of Cardiovascular Medicine, 2006, 7, 645-652.	0.6	44

#	Article	IF	CITATIONS
37	Post–conditioning reduces infarct size in the isolated rat heart: Role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Research in Cardiology, 2006, 101, 168-179.	2.5	118
38	Post–conditioning induced cardioprotection requires signaling through a redox–sensitive mechanism, mitochondrial ATP–sensitive K+ channel and protein kinase C activation. Basic Research in Cardiology, 2006, 101, 180-189.	2.5	222
39	Discriminating formation of HNO from other reactive nitrogen oxide species. Free Radical Biology and Medicine, 2006, 40, 1056-1066.	1.3	99
40	Peroxynitrite and myocardial contractility: In vivo versus in vitro effects. Free Radical Biology and Medicine, 2006, 41, 1606-1618.	1.3	53
41	The Chemistry of Protein Modifications Elicited by Nitric Oxide and Related Nitrogen Oxides. , 2006, , 25-58.		4
42	Comparison of the Chemical Biology of NO and HNO: An Inorganic Perspective. Progress in Inorganic Chemistry, 2005, , 349-384.	3.0	11
43	Comparison of the NO and HNO Donating Properties of Diazeniumdiolates:  Primary Amine Adducts Release HNO in Vivo. Journal of Medicinal Chemistry, 2005, 48, 8220-8228.	2.9	118
44	Mechanism of Aerobic Decomposition of Angeli's Salt (Sodium Trioxodinitrate) at Physiological pH. Journal of the American Chemical Society, 2005, 127, 722-731.	6.6	105
45	Myocardial protection from ischemic preconditioning is not blocked by sub-chronic inhibition of carnitine palmitoyltransferase I. Life Sciences, 2005, 77, 2004-2017.	2.0	1
46	The Chemical Dynamics of NO and Reactive Nitrogen Oxides: A Practical Guide. Current Molecular Medicine, 2004, 4, 723-740.	0.6	41
47	Hypoxic inducible factor $1\hat{l}\pm$, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8894-8899.	3.3	263
48	FOF1ATP synthase activity is differently modulated by coronary reactive hyperemia before and after ischemic preconditioning in the goat. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2192-H2200.	1.5	25
49	The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biological Chemistry, 2004, 385, 1-10.	1.2	256
50	Antioxidant Properties of Nitric Oxide in Cellular Physiological and Pathophysiological Mechanisms. The Implications of Biological Balance between NO and Oxidative Stress. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2004, 3, 181-188.	0.4	8
51	Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radical Biology and Medicine, 2003, 34, 33-43.	1.3	193
52	Orthogonal properties of the redox siblings nitroxyl and nitric oxide in the cardiovascular system: a novel redox paradigm. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2264-H2276.	1.5	86
53	Ischemic preconditioning changes the pattern of coronary reactive hyperemia regardless of mitochondrial ATP-sensitive K+ channel blockade. Life Sciences, 2002, 71, 2299-2309.	2.0	5