
Roman Major

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9004663/publications.pdf Version: 2024-02-01

ROMAN MAIOR

#	Article	IF	CITATIONS
1	Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue. Materials Science and Engineering C, 2015, 53, 310-321.	7.3	24
2	Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers. Journal of Functional Biomaterials, 2012, 3, 283-297.	4.4	17
3	Self-assembling surfaces of blood-contacting materials. Journal of Materials Science: Materials in Medicine, 2013, 24, 725-733.	3.6	17
4	RF deposition of soft hydrogenated amorphous carbon coatings for adhesive interfaces on highly elastic polymer materials. Surface and Coatings Technology, 2009, 203, 2243-2248.	4.8	16
5	Interface growth morphologies in pulsed laser deposited, room temperature grown multilayer hard coatings. Surface and Coatings Technology, 2006, 201, 4090-4093.	4.8	15
6	Selected laser methods for surface structuring of biocompatible diamond-like carbon layers. Diamond and Related Materials, 2016, 67, 26-40.	3.9	13
7	Lecithin suspensions for electrophoretic deposition on stainless steel coatings. Materials Science and Engineering C, 2018, 93, 134-144.	7.3	10
8	Chemical control of polyelectrolyte film properties for an effective cardiovascular implants endothelialization. Archives of Civil and Mechanical Engineering, 2014, 14, 262-268.	3.8	9
9	Hemocompatible, pulsed laser deposited coatings on polymers / Anwendung der Pulslaserbeschichtung zur Abscheidung von hĤnokompatiblen Beschichtungen auf Polymeroberflĩhen. Biomedizinische Technik, 2010, 55, 57-64.	0.8	8
10	Patient specific implants for jawbone reconstruction after tumor resection. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111056.	5.0	8
11	Polyelectrolyte Multilayer Films Modification with Ag and rGO Influences Platelets Activation and Aggregate Formation under In Vitro Blood Flow. Nanomaterials, 2020, 10, 859.	4.1	8
12	Inner surface modification of the tube-like elements for medical applications. RSC Advances, 2013, 3, 11283.	3.6	7
13	In vitro hemocompatibility on thin ceramic and hydrogel films deposited on polymer substrate performed in arterial flow conditions. Materials Science and Engineering C, 2016, 61, 15-22.	7.3	7
14	Surface treatment of thin-film materials to allow dialogue between endothelial and smooth muscle cells and the effective inhibition of platelet activation. RSC Advances, 2014, 4, 9491.	3.6	6
15	Rolling or Two-Stage Aggregation of Platelets on the Surface of Thin Ceramic Coatings under in Vitro Simulated Blood Flow Conditions. ACS Biomaterials Science and Engineering, 2020, 6, 898-911.	5.2	6
16	Surface modification of polyurethane with eptifibatide-loaded degradable nanoparticles reducing risk of blood coagulation. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111624.	5.0	5
17	Effects of the surface modification of polyurethane substrates on genotoxicity and blood activation processes. Materials Science and Engineering C, 2017, 79, 756-762.	7.3	4
18	Adhesion of Poly(lactide-glycolide) Coating (PLGA) on the Ti6Al7Nb Alloy Substrate. Advances in Intelligent Systems and Computing, 2019, , 578-589.	0.6	4

Roman Major

#	Article	IF	CITATIONS
19	The interaction of laser radiation with tissue in the aspect of generating the process of decellularization in the preparation of animal origin autologous tissue. Acta of Bioengineering and Biomechanics, 2020, 22, .	0.4	4
20	Surface modification of metallic materials designed for a new generation of artificial heart valves. International Journal of Artificial Organs, 2018, 41, 854-866.	1.4	3
21	Design, Manufacturing Technology and In-Vitro Evaluation of Original, Polyurethane, Petal Valves for Application in Pulsating Ventricular Assist Devices. Polymers, 2020, 12, 2986.	4.5	3
22	Antibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implants. Molecules, 2021, 26, 3145.	3.8	3
23	Industrially scaled pulsed laser deposition based coating techniques for the realization of hemocompatible surfaces for blood contact applications. Proceedings of SPIE, 2008, , .	0.8	2
24	Computer engineering in designing and fabrication of tissue analogue-type coating dedicated for the cardiovascular regeneration. Archives of Civil and Mechanical Engineering, 2015, 15, 621-630.	3.8	2
25	In vitro haemocompatibility assessment of acrylic acid deposited on solid, polyurethane substrate. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111562.	5.0	2
26	Biocompatibility testing of composite biomaterial designed for a new petal valve construction for pulsatile ventricular assist device. Journal of Materials Science: Materials in Medicine, 2021, 32, 118.	3.6	2
27	<title>Using of laser ablation to fabrication nanocrystalline multilayer coatings for biomedical and tribological application</title> . , 2006, 6598, 33.		1
28	Growth Morphology, Adhesion and Mechanical Properties of Room-Temperature Pulsed Laser Deposited Cr-CrN Multilayer Coatings. Plasma Processes and Polymers, 2007, 4, S906-S909.	3.0	1
29	Biomimetics in thin film design: Niche-like wrinkles designed for i-cell progenitor cell differentiation. Materials Science and Engineering C, 2017, 80, 379-386.	7.3	1
30	The interaction of laser radiation with tissue in the aspect of generating the process of decellularization in the preparation of animal origin autologous tissue. Acta of Bioengineering and Biomechanics, 2020, 22, 67-77.	0.4	1
31	Interdisciplinary Methods for Zoonotic Tissue Acellularization for Natural Heart Valve Substitute of Biomimetic Materials. Materials, 2022, 15, 2594.	2.9	1
32	The cell niches reproducing surface structure. Advances in Intelligent Systems and Computing, 2018, , 379-389.	0.6	0
33	Shockwave-Generating Interdisciplinary Methods Used to Elaborate Acellular Tissue Origin Extracellular Matrix. Advances in Intelligent Systems and Computing, 2021, , 299-309.	0.6	0