
Kazuo Masaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9004633/publications.pdf Version: 2024-02-01

KAZUO MASAKI

#	Article	IF	CITATIONS
1	Features and application potential of microbial urethanases. Applied Microbiology and Biotechnology, 2022, , .	3.6	2
2	Cutinase-like biodegradable plastic-degrading enzymes from phylloplane yeasts have cutinase activity. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1890-1898.	1.3	3
3	Aspergillus oryzae acetamidase catalyzes degradation of ethyl carbamate. Journal of Bioscience and Bioengineering, 2020, 130, 577-581.	2.2	5
4	New urethanase from the yeast Candida parapsilosis. Journal of Bioscience and Bioengineering, 2020, 130, 115-120.	2.2	7
5	Effect of light on carotenoid and lipid production in the oleaginous yeast <i>Rhodosporidium toruloides</i> . Bioscience, Biotechnology and Biochemistry, 2020, 84, 1501-1512.	1.3	24
6	Evaluation of Candida easanensis JK8 β-glucosidase with potentially hydrolyse non-volatile glycosides of wine aroma precursors. Natural Product Research, 2019, 33, 3563-3567.	1.8	11
7	Screening for <i>Lipomyces</i> strains with high ability to accumulate lipids from renewable resources. Journal of General and Applied Microbiology, 2019, 65, 80-87.	0.7	1
8	Growth associated degradation of aliphatic-aromatic copolyesters by Cryptococcus sp. MTCC 5455. Polymer Degradation and Stability, 2018, 152, 20-28.	5.8	21
9	Enhanced Bacterial Growth and Gene Expression of D-Amino Acid Dehydrogenase With D-Glutamate as the Sole Carbon Source. Frontiers in Microbiology, 2018, 9, 2097.	3.5	14
10	Amycolatopsis oliviviridis sp. nov., a novel polylactic acid-bioplastic-degrading actinomycete isolated from paddy soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1448-1454.	1.7	16
11	Effective enhancement of polylactic acid-degrading enzyme production by <i>Amycolatopsis</i> sp. strain SCM_MK2-4 using statistical and one-factor-at-a-time approaches. Preparative Biochemistry and Biotechnology, 2017, 47, 730-738.	1.9	11
12	Codon optimization enables the Zeocin resistance marker's use in the ascomycete yeast <i>Debaryomyces occidentalis</i> . Journal of General and Applied Microbiology, 2017, 63, 254-257.	0.7	4
13	Meaning and Research on Lipid Production for Biodiesel Fuel by Yeast <i>Lipomyces</i> and Trends in Microbial Lipid Production Research. Oleoscience, 2017, 17, 117-125.	0.0	1
14	Candidaeasanensis StrainJK-8 β-Glucosidase: A Glucose-Tolerant Enzyme with High Specific Activity for Laminarin. Current Chemical Biology, 2016, 10, 117-126.	0.5	2
15	Ferulic acid decarboxylation ability and single nucleotide polymorphisms of <i>PAD1</i> and <i>FDC1</i> among sake yeasts and <i>shochu</i> yeasts. Journal of the Brewing Society of Japan, 2016, 111, 679-685.	0.3	0
16	Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology and Biotechnology, 2015, 31, 1431-1442.	3.6	60
17	Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. Journal of Bioscience and Bioengineering, 2014, 118, 50-55.	2.2	81
18	Modified COLD-PCR for detection of minor microorganisms in wine samples during the fermentation. Food Microbiology, 2014, 39, 74-80.	4.2	8

Kazuo Masaki

#	Article	IF	CITATIONS
19	Evaluation of microbial diversity in sulfite-added and sulfite-free wine by culture-dependent and -independent methods. Journal of Bioscience and Bioengineering, 2014, 117, 569-575.	2.2	28
20	Heterologous production of horseradish peroxidase C1a by the basidiomycete yeast Cryptococcus sp. S-2 using codon and signal optimizations. Applied Microbiology and Biotechnology, 2014, 98, 7893-7900.	3.6	8
21	Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway. Applied Microbiology and Biotechnology, 2013, 97, 1183-1190.	3.6	30
22	Comparison of laccase production levels in Pichia pastoris and Cryptococcus sp. S-2. Journal of Bioscience and Bioengineering, 2013, 115, 394-399.	2.2	19
23	Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enzyme and Microbial Technology, 2013, 52, 241-246.	3.2	43
24	Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl. Journal of Biological Chemistry, 2013, 288, 29247-29251.	3.4	4
25	Modified Cre-loxPRecombination in Aspergillus oryzae by Direct Introduction of Cre Recombinase for Marker Gene Rescue. Applied and Environmental Microbiology, 2012, 78, 4126-4133.	3.1	66
26	Construction of a new recombinant protein expression system in the basidiomycetous yeast Cryptococcus sp. strain S-2 and enhancement of the production of a cutinase-like enzyme. Applied Microbiology and Biotechnology, 2012, 93, 1627-1636.	3.6	12
27	Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi. Antonie Van Leeuwenhoek, 2012, 101, 359-368.	1.7	38
28	Purification and characterization of a novel aspartic protease from basidiomycetous yeast Cryptococcus sp. S-2. Journal of Bioscience and Bioengineering, 2011, 112, 441-446.	2.2	21
29	Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polymer Degradation and Stability, 2011, 96, 1342-1348.	5.8	65
30	Decolorization and treatment of Kokuto-shochu distillery wastewater by the combination treatment involving biodecolorization and biotreatment by Penicillium oxalicum d, physical decolorization by ozonation and treatment by activated sludge. Biodegradation, 2010, 21, 1067-1075.	3.0	6
31	PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2010, 109, 564-569.	2.2	189
32	Decolorization of Brown-sugar <i>shochu</i> wastewater using fungi. Journal of the Brewing Society of Japan, 2009, 104, 495-501.	0.3	1
33	Cloning and characterization of a novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris. Journal of Bioscience and Bioengineering, 2009, 108, 225-230.	2.2	25
34	Crystal structure and enhanced activity of a cutinaseâ€like enzyme from <i>Cryptococcus</i> sp. strain Sâ€2. Proteins: Structure, Function and Bioinformatics, 2009, 77, 710-717.	2.6	40
35	Treatment and phosphorus removal from high-concentration organic wastewater by the yeast Hansenula anomala J224 PAWA. Bioresource Technology, 2009, 100, 1781-1785.	9.6	34
36	ONIOM Study of the Mechanism of the Enzymatic Hydrolysis of Biodegradable Plastics. Bulletin of the Chemical Society of Japan, 2009, 82, 338-346.	3.2	6

Kazuo Masaki

#	Article	IF	CITATIONS
37	Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Applied Microbiology and Biotechnology, 2008, 77, 1279-1285.	3.6	49
38	Characterization of an α-l-rhamnosidase from Aspergillus kawachii and its gene. Applied Microbiology and Biotechnology, 2008, 80, 1007-13.	3.6	46
39	An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: Purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Expression and Purification, 2008, 60, 140-146.	1.3	52
40	Comparison of the chiral recognition of prochiral substrates in the acetylation reaction by a novel lipase (CSL) from the yeast, Cryptococcus spp. S-2 with immobilized PPL. Journal of Molecular Catalysis B: Enzymatic, 2006, 38, 1-10.	1.8	8
41	Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids inSaccharomyces cerevisiaecultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Research, 2006, 6, 924-936.	2.3	181
42	Temperature-dependence of enantioselectivity and desymmetrization in the acetylation of 2-mono- and 2,2-di-substituted 1,3-propanediols by a novel lipase isolated from the yeastCryptococcusspp. S-2. Biocatalysis and Biotransformation, 2006, 24, 390-395.	2.0	7
43	Effects of the stabilization of the molten globule state on the folding mechanism of α-lactalbumin: A study of a chimera of bovine and human α-lactalbumin. Proteins: Structure, Function and Bioinformatics, 2005, 61, 356-365.	2.6	5
44	Cutinase-Like Enzyme from the Yeast Cryptococcus sp. Strain S-2 Hydrolyzes Polylactic Acid and Other Biodegradable Plastics. Applied and Environmental Microbiology, 2005, 71, 7548-7550.	3.1	186
45	Structural Analysis of an Insect Lysozyme Exhibiting Catalytic Efficiency at Low Temperatures,. Biochemistry, 2002, 41, 12086-12092.	2.5	28
46	Thermal stability and enzymatic activity of a smaller lysozyme from silk moth (Bombyx mori). The Protein Journal, 2001, 20, 107-113.	1.1	11
47	Construction of an expression system of insect lysozyme lacking thermal stability: the effect of selection of signal sequence on level of expression in the Pichia pastoris expression system. Protein Engineering, Design and Selection, 2001, 14, 705-710.	2.1	36
48	Stability of the molten globule state of a domain-exchanged chimeric protein between human and bovine α-lactalbumins. Protein Engineering, Design and Selection, 2000, 13, 1-4.	2.1	12
49	Local and long-range interactions in the molten globule state: a study of chimeric proteins of bovine and human α-lactalbumin. Journal of Molecular Biology, 2000, 298, 985-995.	4.2	35
50	The molten globule state of a chimera of human α-lactalbumin and equine lysozyme 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 292, 1137-1148.	4.2	26
51	Adsorption of human lysozyme onto hydroxyapatite. FEBS Letters, 1998, 422, 175-178.	2.8	37

4