
Yoshimasa Matsuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9004581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parametric solutions of the generalized short pulse equations. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 105202.	2.1	6
2	Integrable multi-component generalization of a modified short pulse equation. Journal of Mathematical Physics, 2016, 57, .	1.1	23
3	Hamiltonian structure for two-dimensional extended Green–Naghdi equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160127.	2.1	10
4	Hamiltonian formulation of the extended Green–Naghdi equations. Physica D: Nonlinear Phenomena, 2015, 301-302, 1-7.	2.8	23
5	Smooth multisoliton solutions and their peakon limit of Novikov's Camassa–Holm type equation with cubic nonlinearity. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 365203.	2.1	18
6	A novel multi-component generalization of the short pulse equation and its multisoliton solutions. Journal of Mathematical Physics, 2011, 52, .	1.1	76
7	Multiloop Soliton and Multibreather Solutions of the Short Pulse Model Equation. Journal of the Physical Society of Japan, 2007, 76, 084003.	1.6	121
8	Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 359, 451-457.	2.1	75
9	The Peakon Limits of Soliton Solutions of the Camassa–Holm Equation. Journal of the Physical Society of Japan, 2006, 75, 124001.	1.6	29
10	A system of nonlinear algebraic equations connected with the multisoliton solution of the Benjamin–Ono equation. Journal of Mathematical Physics, 2004, 45, 795-802.	1.1	2
11	New Representations of Multiperiodic and Multisoliton Solutions for a Class of Nonlocal Soliton Equations. Journal of the Physical Society of Japan, 2004, 73, 3285-3293.	1.6	12
12	Dark soliton generation for the intermediate nonlinear SchrĶdinger equation. Journal of Mathematical Physics, 2002, 43, 984-1007.	1.1	4
13	Calogero–Moser–Sutherland Dynamical Systems Associated with Nonlocal Nonlinear Schrödinger Equation for Envelope Waves. Journal of the Physical Society of Japan, 2002, 71, 1415-1418.	1.6	10
14	Reduction of dispersionless coupled Korteweg–de Vries equations to the Euler–Darboux equation. Journal of Mathematical Physics, 2001, 42, 1744-1760.	1.1	18
15	The Small Dispersion Limit of the Benjamin-Ono Equation and the Evolution of a Step Initial Condition. Journal of the Physical Society of Japan, 1998, 67, 1814-1817.	1.6	13