
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9004462/publications.pdf Version: 2024-02-01

Νανιίνο Ηλο

#	Article	IF	CITATIONS
1	The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility <i>in Vivo</i> . ACS Nano, 2011, 5, 5390-5399.	14.6	788
2	<i>In Vivo</i> Delivery of Silica Nanorattle Encapsulated Docetaxel for Liver Cancer Therapy with Low Toxicity and High Efficacy. ACS Nano, 2010, 4, 6874-6882.	14.6	304
3	Silica Nanorattle–Doxorubicin-Anchored Mesenchymal Stem Cells for Tumor-Tropic Therapy. ACS Nano, 2011, 5, 7462-7470.	14.6	283
4	One-Step Synthesis of Amine-Functionalized Hollow Mesoporous Silica Nanoparticles as Efficient Antibacterial and Anticancer Materials. ACS Applied Materials & Interfaces, 2015, 7, 1040-1045.	8.0	131
5	The shape effect of PEGylated mesoporous silica nanoparticles on cellular uptake pathway in Hela cells. Microporous and Mesoporous Materials, 2012, 162, 14-23.	4.4	125
6	Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators A: Physical, 2020, 305, 111912.	4.1	91
7	Multifunctional Fe ₃ O ₄ @P(St/MAA)@Chitosan@Au Core/Shell Nanoparticles for Dual Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2013, 5, 4966-4971.	8.0	87
8	<i>In Vitro</i> Degradation Behavior of Silica Nanoparticles Under Physiological Conditions. Journal of Nanoscience and Nanotechnology, 2012, 12, 6346-6354.	0.9	76
9	Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. International Materials Reviews, 2018, 63, 461-487.	19.3	76
10	Shape matters when engineering mesoporous silica-based nanomedicines. Biomaterials Science, 2016, 4, 575-591.	5.4	75
11	Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews, 2017, 62, 57-77.	19.3	73
12	Acoustofluidicsâ€Assisted Fluorescence‧ERS Bimodal Biosensors. Small, 2020, 16, e2005179.	10.0	68
13	Microfluidics-enabled rational design of ZnO micro-/nanoparticles with enhanced photocatalysis, cytotoxicity, and piezoelectric properties. Chemical Engineering Journal, 2019, 378, 122222.	12.7	67
14	Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects. Nanoscale, 2012, 4, 3365.	5.6	63
15	Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell. Chemical Engineering Journal, 2019, 366, 433-438.	12.7	59
16	Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays. ACS Nano, 2020, 14, 6150-6163.	14.6	56
17	The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. New Journal of Chemistry, 2014, 38, 4258.	2.8	51
18	Carbohydrateâ€Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria. Advanced Healthcare Materials, 2015, 4, 2797-2801.	7.6	49

#	Article	IF	CITATIONS
19	Shape-Mediated Biological Effects of Mesoporous Silica Nanoparticles. Journal of Biomedical Nanotechnology, 2014, 10, 2508-2538.	1.1	45
20	Glyconanomaterials for biosensing applications. Biosensors and Bioelectronics, 2016, 76, 113-130.	10.1	45
21	Microfluidics for silica biomaterials synthesis: opportunities and challenges. Biomaterials Science, 2019, 7, 2218-2240.	5.4	42
22	Facile preparation of ellipsoid-like MCM-41 with parallel channels along the short axis for drug delivery and assembly of Ag nanoparticles for catalysis. Journal of Materials Chemistry A, 2014, 2, 11565.	10.3	41
23	Size dependent cellular uptake, in vivo fate and light–heat conversion efficiency of gold nanoshells on silica nanorattles. Nanoscale, 2012, 4, 3523.	5.6	40
24	Flexible Energy Harvester on a Pacemaker Lead Using Multibeam Piezoelectric Composite Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 34170-34179.	8.0	40
25	Microfluidics-Assisted Surface Trifunctionalization of a Zeolitic Imidazolate Framework Nanocarrier for Targeted and Controllable Multitherapies of Tumors. ACS Applied Materials & Interfaces, 2020, 12, 45838-45849.	8.0	39
26	Microfluidic Flow Synthesis of Functional Mesoporous Silica Nanofibers with Tunable Aspect Ratios. ACS Sustainable Chemistry and Engineering, 2018, 6, 1522-1526.	6.7	38
27	Advances in diagnostic microfluidics. Advances in Clinical Chemistry, 2020, 95, 1-72.	3.7	37
28	Microfluidics-enabled acceleration of Fenton oxidation for degradation of organic dyes with rod-like zero-valent iron nanoassemblies. Journal of Colloid and Interface Science, 2020, 559, 254-262.	9.4	36
29	Microfluidics for ZnO micro-/nanomaterials development: rational design, controllable synthesis, and on-chip bioapplications. Biomaterials Science, 2020, 8, 1783-1801.	5.4	35
30	Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery. Chemical Communications, 2015, 51, 9833-9836.	4.1	34
31	Trehalose-Conjugated, Photofunctionalized Mesoporous Silica Nanoparticles for Efficient Delivery of Isoniazid into Mycobacteria. ACS Biomaterials Science and Engineering, 2015, 1, 1250-1255.	5.2	34
32	Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. Lab on A Chip, 2020, 20, 3399-3409.	6.0	33
33	MCM-41 mesoporous silica sheet with ordered perpendicular nanochannels for protein delivery and the assembly of Ag nanoparticles in catalytic applications. Microporous and Mesoporous Materials, 2015, 218, 223-227.	4.4	32
34	Shape control of mesoporous silica nanomaterials templated with dual cationic surfactants and their antibacterial activities. Biomaterials Science, 2016, 4, 87-91.	5.4	32
35	Microfluidic Screening of Circulating Tumor Biomarkers toward Liquid Biopsy. Separation and Purification Reviews, 2018, 47, 19-48.	5.5	31
36	Acoustofluidic multimodal diagnostic system for Alzheimer's disease. Biosensors and Bioelectronics, 2022, 196, 113730.	10.1	31

#	Article	IF	CITATIONS
37	Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials. Materials Research Letters, 2017, 5, 584-590.	8.7	27
38	Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation. Microsystems and Nanoengineering, 2022, 8, 45.	7.0	27
39	Overcoming Multidrug Resistance with Mesoporous Silica Nanorods as Nanocarrier of Doxorubicin. Journal of Nanoscience and Nanotechnology, 2012, 12, 4458-4466.	0.9	25
40	Acoustics-Actuated Microrobots. Micromachines, 2022, 13, 481.	2.9	23
41	Microfluidics-enabled rational design of immunomagnetic nanomaterials and their shape effect on liquid biopsy. Lab on A Chip, 2018, 18, 1997-2002.	6.0	22
42	Ultrafast microfluidic synthesis of hierarchical triangular silver core-silica shell nanoplatelet toward enhanced cellular internalization. Journal of Colloid and Interface Science, 2019, 542, 370-378.	9.4	22
43	Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature Communications, 2021, 12, 3844.	12.8	22
44	Ultrafast Synthesis of Multifunctional Submicrometer Hollow Silica Spheres in Microfluidic Spiral Channels. Scientific Reports, 2017, 7, 12616.	3.3	21
45	Hierarchical Lotus Leaf-Like Mesoporous Silica Material with Unique Bilayer and Hollow Sandwich-Like Folds: Synthesis, Mechanism, and Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 2044-2049.	6.7	20
46	Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Applied Materials Today, 2022, 26, 101356.	4.3	20
47	Biomimetic hierarchical walnut kernel-like and erythrocyte-like mesoporous silica nanomaterials: Controllable synthesis and versatile applications. Microporous and Mesoporous Materials, 2018, 261, 144-149.	4.4	19
48	Magnetic nanotechnology for circulating tumor biomarkers screening: Rational design, microfluidics integration and applications. Biomicrofluidics, 2019, 13, .	2.4	19
49	Sharp-edge acoustic microfluidics: Principles, structures, and applications. Applied Materials Today, 2021, 25, 101239.	4.3	18
50	Acoustofluidic black holes for multifunctional in-droplet particle manipulation. Science Advances, 2022, 8, eabm2592.	10.3	17
51	Magnetic Multivalent Trehalose Glycopolymer Nanoparticles for the Detection of Mycobacteria. Advanced Healthcare Materials, 2016, 5, 2007-2012.	7.6	16
52	Microfluidics-enabled rapid manufacturing of hierarchical silica-magnetic microflower toward enhanced circulating tumor cell screening. Biomaterials Science, 2018, 6, 3121-3125.	5.4	16
53	Microfluidic synthesis and on-chip enrichment application of two-dimensional hollow sandwich-like mesoporous silica nanosheet with water ripple-like surface. Journal of Colloid and Interface Science, 2019, 539, 87-94.	9.4	16
54	Acoustic microreactors for chemical engineering. Chemical Engineering Journal, 2022, 433, 133258.	12.7	16

#	Article	IF	CITATIONS
55	Tunable Buckled Beams with Mesoporous PVDF-TrFE/SWCNT Composite Film for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33516-33522.	8.0	13
56	Silver nanoparticle on zinc oxide array for label-free detection of opioids through surface-enhanced raman spectroscopy. RSC Advances, 2021, 11, 11329-11337.	3.6	11
57	Skinâ€like Elastomer Embedded Zinc Oxide Nanoarrays for Biomechanical Energy Harvesting. Advanced Materials Interfaces, 2021, 8, 2100094.	3.7	11
58	Rational design of robust flower-like sharp-edge acoustic micromixers towards efficient engineering of functional 3D ZnO nanorod array. Chemical Engineering Journal, 2022, 447, 137547.	12.7	10
59	Fabrication of PLGA coated silica nanorattle for controlling the drug release behavior. Science Bulletin, 2012, 57, 3631-3638.	1.7	8
60	Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy. Journal of Nanobiotechnology, 2021, 19, 63.	9.1	8
61	BSA Protein-Mediated Synthesis of Hollow Mesoporous Silica Nanotubes, and Their Carbohydrate Conjugates for Targeting Cancer Cells and Detecting Mycobacteria. ACS Applied Materials & Interfaces, 2016, 8, 29208-29212.	8.0	5
62	Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	3
63	Fabrication of Carbohydrate-Conjugated Fingerprintlike Mesoporous Silica Net for the Targeted Capture of Bacteria. ACS Applied Materials & Interfaces, 2016, 8, 30683-30686.	8.0	1
64	Biomechanical Energy Harvester: Skinâ€like Elastomer Embedded Zinc Oxide Nanoarrays for Biomechanical Energy Harvesting (Adv. Mater. Interfaces 10/2021). Advanced Materials Interfaces, 2021, 8, 2170057.	3.7	1