Debasis Panda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9003404/publications.pdf

Version: 2024-02-01

23 889 17
papers citations h-index

34 34 34 1586
all docs docs citations times ranked citing authors

22

g-index

#	Article	IF	CITATIONS
1	IRF1 Maintains Optimal Constitutive Expression of Antiviral Genes and Regulates the Early Antiviral Response. Frontiers in Immunology, 2019, 10, 1019.	4.8	82
2	S27 of IFNÎ ± 1 Contributes to Its Low Affinity for IFNAR2 and Weak Antiviral Activity. Journal of Interferon and Cytokine Research, 2019, 39, 283-292.	1.2	2
3	Triad of human cellular proteins, IRF2, FAM111A, and RFC3, restrict replication of orthopoxvirus SPI-1 host-range mutants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3720-3725.	7.1	27
4	Virus-induced translational arrest through 4EBP1/2-dependent decay of $5\hat{a}\in^2$ -TOP mRNAs restricts viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2920-9.	7.1	45
5	RNASEK is required for internalization of diverse acid-dependent viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7797-7802.	7.1	48
6	The Transcription Factor FoxK Participates with Nup98 To Regulate Antiviral Gene Expression. MBio, 2015, 6, .	4.1	21
7	A genome-wide RNAi screening method to discover novel genes involved in virus infection. Methods, 2015, 91, 75-81.	3.8	8
8	Interferon-Inducible Protein IFI35 Negatively Regulates RIG-I Antiviral Signaling and Supports Vesicular Stomatitis Virus Replication. Journal of Virology, 2014, 88, 3103-3113.	3.4	79
9	Nup98 promotes antiviral gene expression to restrict RNA viral infection in <i>Drosophila</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3890-9.	7.1	39
10	Genome-wide RNAi Screen Identifies SEC61A and VCP as Conserved Regulators of Sindbis Virus Entry. Cell Reports, 2013, 5, 1737-1748.	6.4	57
11	A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes and Development, 2013, 27, 1511-1525.	5.9	86
12	Induction of Stress Granule-Like Structures in Vesicular Stomatitis Virus-Infected Cells. Journal of Virology, 2013, 87, 372-383.	3.4	53
13	Cell-based genomic screening: elucidating virus–host interactions. Current Opinion in Virology, 2012, 2, 784-792.	5.4	38
14	A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus. Virology, 2012, 432, 460-469.	2.4	10
15	RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19036-19041.	7.1	83
16	Transcription of Vesicular Stomatitis Virus RNA Genome. , 2011, , 149-173.		1
17	Antagonistic Effects of Cellular Poly(C) Binding Proteins on Vesicular Stomatitis Virus Gene Expression. Journal of Virology, 2011, 85, 9459-9471.	3.4	34
18	Induction of Interferon and Interferon Signaling Pathways by Replication of Defective Interfering Particle RNA in Cells Constitutively Expressing Vesicular Stomatitis Virus Replication Proteins. Journal of Virology, 2010, 84, 4826-4831.	3.4	17

#	Article	IF	CITATION
19	Single-Amino-Acid Alterations in a Highly Conserved Central Region of Vesicular Stomatitis Virus N Protein Differentially Affect the Viral Nucleocapsid Template Functions. Journal of Virology, 2009, 83, 5525-5534.	3.4	25
20	Oxidative stress indices in gastroenteritis in dogs with canine parvoviral infection. Research in Veterinary Science, 2009, 86, 36-42.	1.9	51
21	Biarsenical Labeling of Vesicular Stomatitis Virus Encoding Tetracysteine-Tagged M Protein Allows Dynamic Imaging of M Protein and Virus Uncoating in Infected Cells. Journal of Virology, 2009, 83, 2611-2622.	3.4	51
22	Biarsenical Labeling of Tetracysteine-Tagged Proteins for Tracking Existing and Newly Synthesized Pools of Proteins. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5343-pdb.prot5343.	0.3	2
23	Evolutionary and structural analyses of alpha-papillomavirus capsid proteins yields novel insights into L2 structure and interaction with L1. Virology Journal, 2008, 5, 150.	3.4	30