Feng Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9003379/publications.pdf

Version: 2024-02-01

57 papers	2,121 citations	201674 27 h-index	233421 45 g-index
59 all docs	59 docs citations	59 times ranked	3217 citing authors

#	Article	IF	CITATIONS
1	Simultaneous evaluation of kinetic release of labile arsenic and phosphorus in agricultural soils using cerium oxide-based DGT. Science of the Total Environment, 2022, 807, 151039.	8.0	6
2	Occurrence and distribution of organophosphate flame retardants in the typical soil profiles of the Tibetan Plateau, China. Science of the Total Environment, 2022, 807, 150519.	8.0	15
3	Investigation of interaction between MXene nanosheets and human plasma and protein corona composition. Nanoscale, 2022, 14, 3777-3787.	5.6	15
4	Ornamental houseplants as potential biosamplers for indoor pollution of organophosphorus flame retardants. Science of the Total Environment, 2021, 767, 144433.	8.0	16
5	Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices. Biosensors and Bioelectronics, 2021, 184, 113220.	10.1	19
6	Characteristics and risk assessment of organophosphate esters and phthalates in soils and vegetation from Dalian, northeast China. Environmental Pollution, 2021, 284, 117532.	7.5	34
7	Desorption kinetics of tetracyclines in soils assessed by diffusive gradients in thin films. Environmental Pollution, 2020, 256, 113394.	7.5	17
8	Tidal variability of polycyclic aromatic hydrocarbons and organophosphate esters in the coastal seawater of Dalian, China. Science of the Total Environment, 2020, 708, 134441.	8.0	24
9	Distribution of organophosphate esters between the gas phase and PM2.5 in urban Dalian, China. Environmental Pollution, 2020, 259, 113882.	7.5	23
10	Polycyclic aromatic hydrocarbons in the atmosphere and soils of Dalian, China: Source, urban-rural gradient, and air-soil exchange. Chemosphere, 2020, 244, 125518.	8.2	35
11	Characteristics and risk assessment of organophosphorus flame retardants in urban road dust of Dalian, Northeast China. Science of the Total Environment, 2020, 705, 135995.	8.0	18
12	Diffusive gradients in thin films using molecularly imprinted polymer binding gels for in situ measurements of antibiotics in urban wastewaters. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	9
13	In situ measurement of synthetic musks in wastewaters using diffusive gradients in thin film technique. Water Research, 2020, 185, 116239.	11.3	11
14	Pet hair as a potential sentinel of human exposure: Investigating partitioning and exposures from OPEs and PAHs in indoor dust, air, and pet hair from China. Science of the Total Environment, 2020, 745, 140934.	8.0	19
15	Kinetics and mechanism study of H-acid degradation by peroxymonosulfate activation with Co3O4-Fe2O3/Al2O3. Korean Journal of Chemical Engineering, 2020, 37, 961-968.	2.7	5
16	Occurrence and air-soil exchange of organophosphate flame retardants in the air and soil of Dalian, China. Environmental Pollution, 2020, 265, 114850.	7.5	30
17	Ceria oxide nanoparticle-based diffusive gradients in thin films for in situ measurement of dissolved reactive phosphorus in waters and sewage sludge. Environmental Science and Pollution Research, 2020, 27, 11138-11146.	5.3	5
18	Intrinsic adsorption properties of raw coal fly ash for quinoline from aqueous solution: kinetic and equilibrium studies. SN Applied Sciences, 2019, 1, 1.	2.9	6

#	Article	IF	CITATIONS
19	Polyurethane heat preservation materials: The significant sources of organophosphorus flame retardants. Chemosphere, 2019, 227, 409-415.	8.2	26
20	Development of cerium oxide-based diffusive gradients in thin films technique for in-situ measurement of dissolved inorganic arsenic in waters. Analytica Chimica Acta, 2019, 1052, 65-72.	5.4	12
21	Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the air of Dalian, China: Correlations with six criteria air pollutants and meteorological conditions. Chemosphere, 2019, 216, 516-523.	8.2	47
22	Nanoengineering of amino - functionalized mesoporous silica nanospheres as nanoreactors. Progress in Natural Science: Materials International, 2018, 28, 242-245.	4.4	12
23	2D, 3D mesostructured silicas templated mesoporous manganese dioxide for selective catalytic reduction of NOx with NH3. Journal of Colloid and Interface Science, 2018, 516, 254-262.	9.4	29
24	3D mesoporous CuFe2O4 as a catalyst for photo-Fenton removal of sulfonamide antibiotics at near neutral pH. Journal of Colloid and Interface Science, 2018, 524, 409-416.	9.4	70
25	Development and evaluation of diffusive gradients in thin films technique for measuring antibiotics in seawater. Science of the Total Environment, 2018, 618, 1605-1612.	8.0	53
26	Measurement and prediction of bioconcentration factors of organophosphate flame retardants in common carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, 2018, 166, 270-276.	6.0	40
27	Preparation and characterization of hydrophilic polydopamine-coated Fe3O4/oxide graphene imprinted nanocomposites for removal of bisphenol A in waters. Korean Journal of Chemical Engineering, 2018, 35, 1836-1843.	2.7	5
28	Diffusive gradients in thin films based on MOF-derived porous carbon binding gel for in-situ measurement of antibiotics in waters. Science of the Total Environment, 2018, 645, 482-490.	8.0	37
29	Highly sensitive detection of Cr(VI) by reduced graphene oxide chemiresistor and 1,4-dithiothreitol functionalized Au nanoparticles. Sensors and Actuators B: Chemical, 2017, 247, 265-272.	7.8	38
30	Preparation of polydopamine-coated graphene oxide/Fe3O4 imprinted nanoparticles for selective removal of fluoroquinolone antibiotics in water. Scientific Reports, 2017, 7, 5735.	3.3	30
31	Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. Environmental Science and Pollution Research, 2017, 24, 16478-16487.	5.3	96
32	An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sensors and Actuators B: Chemical, 2016, 233, 599-606.	7.8	187
33	An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples. Journal of Hazardous Materials, 2016, 320, 226-233.	12.4	65
34	Graphene oxide based inâ€ŧube solidâ€phase microextraction combined with liquid chromatography tandem mass spectrometry for the determination of triazine herbicides in water. Journal of Separation Science, 2015, 38, 2312-2319.	2.5	26
35	Azide-functionalized hollow silica nanospheres for removal of antibiotics. Journal of Colloid and Interface Science, 2015, 444, 38-41.	9.4	30
36	Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. Journal of Colloid and Interface Science, 2015, 447, 120-127.	9.4	142

#	Article	IF	CITATIONS
37	Elucidating the electrostatic interaction of sulfonic acid functionalized SBA-15 for ciprofloxain adsorption. Applied Surface Science, 2015, 349, 224-229.	6.1	14
38	Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples. Environmental Science & Environment	10.0	56
39	DNA-modified graphene quantum dots as a sensing platform for detection of Hg ²⁺ in living cells. RSC Advances, 2015, 5, 39587-39591.	3 . 6	43
40	Clickable SBAâ€15 to Screen Functional Groups for Adsorption of Antibiotics. Chemistry - an Asian Journal, 2014, 9, 908-914.	3.3	12
41	Molecularly imprinted polymer/mesoporous carbon nanoparticles as electrode sensing material for selective detection of ofloxacin. Materials Letters, 2014, 129, 95-97.	2.6	35
42	Clickable Periodic Mesoporous Organosilicas: Synthesis, Click Reactions, and Adsorption of Antibiotics. Chemistry - A European Journal, 2014, 20, 1957-1963.	3.3	50
43	Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. Journal of Hazardous Materials, 2013, 244-245, 750-757.	12.4	102
44	Global Liver Proteome Analysis Using iTRAQ Labeling Quantitative Proteomic Technology to Reveal Biomarkers in Mice Exposed to Perfluorooctane Sulfonate (PFOS). Environmental Science & Eamp; Technology, 2012, 46, 12170-12177.	10.0	51
45	An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Analytica Chimica Acta, 2012, 727, 26-33.	5.4	119
46	Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nanotubes/carbon paste electrode. Analytical Methods, 2012, 4, 3283.	2.7	48
47	Selective detection of nanomolar Cr(<scp>vi</scp>) in aqueous solution based on 1,4-dithiothreitol functionalized gold nanoparticles. Analytical Methods, 2011, 3, 343-347.	2.7	50
48	Evaluation of a novel microextraction technique for aqueous samples: Porous membrane envelope filled with multiwalled carbon nanotubes coated with molecularly imprinted polymer. Journal of Separation Science, 2011, 34, 707-715.	2.5	31
49	A simple and efficient frit preparation method for oneâ€end taperedâ€fused silicaâ€packed capillary columns in nanoâ€LCâ€ESI MS. Proteomics, 2010, 10, 1724-1727.	2.2	13
50	Preparation and evaluation of molecularly imprinted solid-phase microextraction fibers for selective extraction of bisphenol A in complex samples. Journal of Chromatography A, 2009, 1216, 5647-5654.	3.7	90
51	Enrichment of Phosphopeptides by Fe ³⁺ -Immobilized Magnetic Nanoparticles for Phosphoproteome Analysis of the Plasma Membrane of Mouse Liver. Journal of Proteome Research, 2008, 7, 1078-1087.	3.7	71
52	Specific capture of phosphopeptides on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry targets modified by magnetic affinity nanoparticles. Rapid Communications in Mass Spectrometry, 2007, 21, 2407-2414.	1.5	25
53	Study of conical columns with $10 \hat{A}^\circ$ opening angle for preparative liquid chromatography. Journal of Chromatography A, 2006, 1108, 218-224.	3.7	3
54	Studies on column size scale-up and flow profile in conical shape liquid chromatographic column of $10\hat{A}^{\circ}$ by visualization method. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 448-453.	0.4	1

FENG TAN

#	Article	IF	CITATIONS
55	Simultaneous Light Emitting Diode-Induced Fluorescence and Contactless Conductivity Detection for Capillary Electrophoresis. Analytical Sciences, 2005, 21, 583-585.	1.6	39
56	Determination of Heavy Metal Ions by Capillary Electrophoresis with Contactless Conductivity Detection after Field-amplified Sample Injection. Analytical Sciences, 2005, 21, 955-958.	1.6	13
57	Magnetic molecularly imprinted polymers for selectively adsorbing flavins and their effects on bioremoval of $<$ scp $>$ Acid Red $<$ /scp $>$ 18 and Cr($<$ scp $>$ VI $<$ /scp $>$). Journal of Chemical Technology and Biotechnology, 0, , .	3.2	3