
Shuru Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002994/publications.pdf Version: 2024-02-01

SHIIDII CHEN

#	Article	IF	CITATIONS
1	Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nature Energy, 2021, 6, 987-994.	39.5	208
2	Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 2020, 5, 3140-3151.	17.4	196
3	High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nature Energy, 2019, 4, 551-559.	39.5	492
4	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, 3, 1094-1105.	24.0	358
5	Minimized Volume Expansion in Hierarchical Porous Silicon upon Lithiation. ACS Applied Materials & Interfaces, 2019, 11, 13257-13263.	8.0	51
6	Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate. ChemElectroChem, 2018, 5, 761-769.	3.4	58
7	Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes. ACS Energy Letters, 2018, 3, 315-321.	17.4	373
8	Superior Performance of a Lithium–Sulfur Battery Enabled by a Dimethyl Trisulfide Containing Electrolyte. Small Methods, 2018, 2, 1800038.	8.6	44
9	Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes. Advanced Materials, 2018, 30, e1706102.	21.0	761
10	Electrode Edge Effects and the Failure Mechanism of Lithiumâ€Metal Batteries. ChemSusChem, 2018, 11, 3821-3828.	6.8	35
11	High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule, 2018, 2, 1548-1558.	24.0	436
12	Lithiumâ€Metal Batteries: Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes (Adv. Mater. 21/2018). Advanced Materials, 2018, 30, 1870144.	21.0	4
13	A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2059-2067.	17.4	257
14	Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries. CheM, 2018, 4, 1877-1892.	11.7	628
15	A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6959-6966.	8.0	65
16	Exceptionally High Ionic Conductivity in Na ₃ P _{0.62} As _{0.38} S ₄ with Improved Moisture Stability for Solidâ€6tate Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605561.	21.0	164
17	High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. Nano Energy, 2017, 31, 418-423.	16.0	83
18	General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes. Journal of the American Chemical Society, 2017, 139, 17359-17367.	13.7	112

SHURU CHEN

#	Article	IF	CITATIONS
19	Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nature Communications, 2017, 8, 850.	12.8	240
20	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 4231-4235.	13.8	149
21	Roomâ€Temperature Synthesis of Mesoporous Sn/SnO ₂ Composite as Anode for Sodiumâ€ion Batteries. European Journal of Inorganic Chemistry, 2016, 2016, 1950-1954.	2.0	23
22	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4303-4307.	2.0	35
23	Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 6779-6783.	8.0	75
24	Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogenâ€Doped Carbon Composites For Highâ€Performance Lithium–Sulfur Battery Cathodes. Angewandte Chemie - International Edition, 2015, 54, 4325-4329.	13.8	686
25	Facile synthesis of graphene–silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ionics, 2014, 254, 65-71.	2.7	89
26	Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nature Communications, 2014, 5, 3605.	12.8	212
27	Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 185, 7-12.	3.5	58
28	Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1257-1262.	10.3	165
29	Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode. Journal of Materials Chemistry A, 2014, 2, 10375-10378.	10.3	79
30	Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 8623-8627.	10.3	87
31	Highâ€Performance Hybrid Supercapacitor Enabled by a Highâ€Rate Siâ€based Anode. Advanced Functional Materials, 2014, 24, 7433-7439.	14.9	208
32	Porous Spherical Carbon/Sulfur Nanocomposites by Aerosol-Assisted Synthesis: The Effect of Pore Structure and Morphology on Their Electrochemical Performance As Lithium/Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 7596-7606.	8.0	84
33	Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 8006-8010.	8.0	161
34	Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochemistry Communications, 2013, 28, 79-82.	4.7	64
35	Mesoporous Carbon–Carbon Nanotube–Sulfur Composite Microspheres for High-Areal-Capacity Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2013, 5, 11355-11362.	8.0	230
36	Microâ€sized Siâ€C Composite with Interconnected Nanoscale Building Blocks as Highâ€Performance Anodes for Practical Application in Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 295-300.	19.5	412

SHURU CHEN

#	Article	IF	CITATIONS
37	Exceptional electrochemical performance of rechargeable Li–S batteries with a polysulfide-containing electrolyte. RSC Advances, 2013, 3, 3540.	3.6	87
38	Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy, 2013, 2, 498-504.	16.0	120
39	Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Physical Chemistry Chemical Physics, 2012, 14, 12741.	2.8	196
40	Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life. RSC Advances, 2012, 2, 12710.	3.6	47
41	Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. Journal of Materials Chemistry, 2012, 22, 4744.	6.7	195
42	Formation of SnS nanoflowers for lithium ion batteries. Chemical Communications, 2012, 48, 5608.	4.1	167
43	Preparation of Pt nanoparticles supported on ordered mesoporous carbon FDU-15 for electrocatalytic oxidation of CO and methanol. Electrochimica Acta, 2012, 67, 127-132.	5.2	29
44	Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta, 2011, 56, 9549-9555.	5.2	329
45	A composite material of SnO2/ordered mesoporous carbon for the application in Lithium-ion Battery. Journal of Electroanalytical Chemistry, 2011, 656, 185-191.	3.8	47
46	In situ microscope FTIR spectroscopic studies of interfacial reactions of Sn–Co alloy film anode of lithium ion battery. Journal of Electroanalytical Chemistry, 2010, 649, 171-176.	3.8	48
47	Synthesis and Durability of Highly Dispersed Platinum Nanoparticles Supported on Ordered Mesoporous Carbon and Their Electrocatalytic Properties for Ethanol Oxidation. Journal of Physical Chemistry C, 2010, 114, 19055-19061.	3.1	22
48	One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochimica Acta, 2009, 54, 5825-5829.	5.2	147