
F Kurtis Kasper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies for controlled delivery of growth factors and cells for bone regeneration. Advanced Drug Delivery Reviews, 2012, 64, 1292-1309.	6.6	549
2	Evaluation of bone regeneration using the rat critical size calvarial defect. Nature Protocols, 2012, 7, 1918-1929.	5.5	485
3	Engineering Complex Tissues. Science Translational Medicine, 2012, 4, 160rv12.	5.8	436
4	Effect of Swelling Ratio of Injectable Hydrogel Composites on Chondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal Stem Cells In Vitro. Biomacromolecules, 2009, 10, 541-546.	2.6	319
5	Polymeric Nanofibers in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2011, 17, 349-364.	2.5	282
6	Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering. Biomacromolecules, 2013, 14, 900-909.	2.6	262
7	Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6500-6505.	3.3	210
8	Harnessing and Modulating Inflammation in Strategies for Bone Regeneration. Tissue Engineering - Part B: Reviews, 2011, 17, 393-402.	2.5	182
9	Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. Journal of Controlled Release, 2010, 143, 95-103.	4.8	180
10	Osteogenic Differentiation of Mesenchymal Stem Cells on Pregenerated Extracellular Matrix Scaffolds in the Absence of Osteogenic Cell Culture Supplements. Tissue Engineering - Part A, 2010, 16, 431-440.	1.6	177
11	Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials, 2012, 33, 6362-6369.	5.7	175
12	Synthesis of poly(propylene fumarate). Nature Protocols, 2009, 4, 518-525.	5.5	174
13	Biomaterials for Tissue Engineering. Annals of Biomedical Engineering, 2014, 42, 323-337.	1.3	165
14	Engineering Tumors: A Tissue Engineering Perspective in Cancer Biology. Tissue Engineering - Part B: Reviews, 2010, 16, 351-359.	2.5	163
15	Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomaterialia, 2010, 6, 39-47.	4.1	160
16	The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells. Biomaterials, 2008, 29, 2729-2739.	5.7	144
17	Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomaterialia, 2013, 9, 8365-8373.	4.1	143
18	Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials, 2014, 35, 8829-8839.	5.7	136

#	Article	IF	CITATIONS
19	Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials, 2010, 31, 8911-8920.	5.7	135
20	Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials, 2014, 35, 7460-7469.	5.7	127
21	Mechanical properties of myxomatous mitral valves. Journal of Thoracic and Cardiovascular Surgery, 2001, 122, 955-962.	0.4	122
22	Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. Journal of Controlled Release, 2013, 168, 166-178.	4.8	122
23	The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials, 2013, 34, 4266-4273.	5.7	121
24	Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. American Journal of Orthodontics and Dentofacial Orthopedics, 2017, 152, 557-565.	0.8	115
25	Enhancing Chondrogenic Phenotype for Cartilage Tissue Engineering: Monoculture and Coculture of Articular Chondrocytes and Mesenchymal Stem Cells. Tissue Engineering - Part B: Reviews, 2014, 20, 641-654.	2.5	114
26	Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials, 2010, 31, 4146-4156.	5.7	109
27	In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials, 2009, 30, 2741-2752.	5.7	108
28	Strategies for controlled delivery of biologics for cartilage repair. Advanced Drug Delivery Reviews, 2015, 84, 123-134.	6.6	91
29	Evolving strategies for preventing biofilm on implantable materials. Materials Today, 2013, 16, 177-182.	8.3	87
30	TGF-Î ² 3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds. Biomaterials, 2014, 35, 123-132.	5.7	87
31	Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. Journal of Controlled Release, 2011, 152, 196-205.	4.8	84
32	Infection and tissue engineering in segmental bone defects—a mini review. Current Opinion in Biotechnology, 2011, 22, 721-725.	3.3	83
33	Synthesis of oligo(poly(ethylene glycol) fumarate). Nature Protocols, 2012, 7, 1219-1227.	5.5	76
34	Scaffold/Extracellular Matrix Hybrid Constructs for Boneâ€Tissue Engineering. Advanced Healthcare Materials, 2013, 2, 13-24.	3.9	75
35	Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. Journal of Materials Chemistry, 2010, 20, 1638-1645.	6.7	72
36	Building Bridges: Leveraging Interdisciplinary Collaborations in the Development of Biomaterials to Meet Clinical Needs. Advanced Materials, 2012, 24, 4995-5013.	11.1	72

#	Article	IF	CITATIONS
37	Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomaterialia, 2011, 7, 1460-1467.	4.1	70
38	Synthesis and Characterization of Thermally and Chemically Gelling Injectable Hydrogels for Tissue Engineering. Biomacromolecules, 2012, 13, 1908-1915.	2.6	70
39	Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs. Acta Biomaterialia, 2014, 10, 1824-1835.	4.1	69
40	Modulation of osteogenic properties of biodegradable polymer/extracellular matrix scaffolds generated with a flow perfusion bioreactor. Acta Biomaterialia, 2010, 6, 2386-2393.	4.1	67
41	Novel applications of statins for bone regeneration. National Science Review, 2015, 2, 85-99.	4.6	67
42	Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction. Journal of Cellular and Molecular Medicine, 2012, 16, 1310-1320.	1.6	65
43	Effects of TGF-Î ² 3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomaterialia, 2010, 6, 2920-2931.	4.1	62
44	Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects. Acta Biomaterialia, 2011, 7, 3627-3637.	4.1	62
45	In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol)fumarate) and cationized gelatin microspheres. Journal of Controlled Release, 2005, 107, 547-561.	4.8	61
46	Uncultured Marrow Mononuclear Cells Delivered Within Fibrin Glue Hydrogels to Porous Scaffolds Enhance Bone Regeneration Within Critical-Sized Rat Cranial Defects. Tissue Engineering - Part A, 2010, 16, 3555-3568.	1.6	61
47	Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomedical Materials (Bristol), 2013, 8, 014103.	1.7	61
48	In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. Journal of Controlled Release, 2005, 104, 521-539.	4.8	59
49	The Role of Lipase and α-Amylase in the Degradation of Starch/Poly(ɛ-Caprolactone) Fiber Meshes and the Osteogenic Differentiation of Cultured Marrow Stromal Cells. Tissue Engineering - Part A, 2009, 15, 295-305.	1.6	58
50	Fabrication of Nonwoven Coaxial Fiber Meshes by Electrospinning. Tissue Engineering - Part C: Methods, 2009, 15, 333-344.	1.1	57
51	Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels. Acta Biomaterialia, 2014, 10, 1112-1123.	4.1	54
52	Synthesis, Physicochemical Characterization, and Cytocompatibility of Bioresorbable, Dual-Gelling Injectable Hydrogels. Biomacromolecules, 2014, 15, 132-142.	2.6	53
53	Effect of print layer height on the assessment of 3D-printed models. American Journal of Orthodontics and Dentofacial Orthopedics, 2019, 156, 283-289.	0.8	53
54	Enhanced Osteogenesis in Cocultures with Human Mesenchymal Stem Cells and Endothelial Cells on Polymeric Microfiber Scaffolds. Tissue Engineering - Part A, 2013, 19, 2565-2576.	1.6	50

#	Article	IF	CITATIONS
55	Engineering a Polymeric Gene Delivery Vector Based on Poly(ethylenimine) and Hyaluronic Acid. Biomacromolecules, 2012, 13, 1429-1437.	2.6	49
56	Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomaterialia, 2014, 10, 4103-4112.	4.1	49
57	Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2016, 4, 6773-6786.	2.9	49
58	Articular Chondrocyte Redifferentiation in 3D Co-cultures with Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2014, 20, 514-523.	1.1	48
59	Structure–Property Evaluation of Thermally and Chemically Gelling Injectable Hydrogels for Tissue Engineering. Biomacromolecules, 2012, 13, 2821-2830.	2.6	47
60	Synthesis and Characterization of Injectable, Biodegradable, Phosphate-Containing, Chemically Cross-Linkable, Thermoresponsive Macromers for Bone Tissue Engineering. Biomacromolecules, 2014, 15, 1788-1796.	2.6	47
61	Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthritis and Cartilage, 2014, 22, 1291-1300.	0.6	45
62	Analysis of the osteoinductive capacity and angiogenicity of an <i>in vitro</i> generated extracellular matrix. Journal of Biomedical Materials Research - Part A, 2009, 88A, 295-303.	2.1	43
63	Perspectives on the interface of drug delivery and tissue engineering. Advanced Drug Delivery Reviews, 2013, 65, 89-92.	6.6	41
64	Cell-Derived Polymer/Extracellular Matrix Composite Scaffolds for Cartilage Regeneration, Part 2: Construct Devitalization and Determination of Chondroinductive Capacity. Tissue Engineering - Part C: Methods, 2014, 20, 358-372.	1.1	41
65	Delivery of Plasmid DNA Encoding Bone Morphogenetic Protein-2 with a Biodegradable Branched Polycationic Polymer in a Critical-Size Rat Cranial Defect Model. Tissue Engineering - Part A, 2011, 17, 751-763.	1.6	40
66	Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	40
67	Evaluation of Soft Tissue Coverage over Porous Polymethylmethacrylate Space Maintainers Within Nonhealing Alveolar Bone Defects. Tissue Engineering - Part C: Methods, 2010, 16, 1427-1438.	1.1	39
68	Effects of Antibiotic Physicochemical Properties on Their Release Kinetics from Biodegradable Polymer Microparticles. Pharmaceutical Research, 2014, 31, 3379-3389.	1.7	39
69	Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol)) Tj ETQq1 1 0.7 Biomedical Materials Research - Part A, 2006, 78A, 335-342.	84314 rgB7 2.1	7 /Overlock 38
70	Natural Stimulus Responsive Scaffolds/Cells for Bone Tissue Engineering: Influence of Lysozyme upon Scaffold Degradation and Osteogenic Differentiation of Cultured Marrow Stromal Cells Induced by CaP Coatings. Tissue Engineering - Part A, 2009, 15, 1953-1963.	1.6	37
71	Protein and Mineral Composition of Osteogenic Extracellular Matrix Constructs Generated with a Flow Perfusion Bioreactor. Biomacromolecules, 2011, 12, 4204-4212.	2.6	37
72	Effect of print orientation and duration of ultraviolet curing on the dimensional accuracy of a 3-dimensionally printed orthodontic clear aligner design. American Journal of Orthodontics and Dentofacial Orthopedics, 2020, 158, 889-897.	0.8	37

#	Article	IF	CITATIONS
73	Autologously Generated Tissue-Engineered Bone Flaps for Reconstruction of Large Mandibular Defects in an Ovine Model. Tissue Engineering - Part A, 2015, 21, 1520-1528.	1.6	33
74	Analysis of the thickness of 3-dimensional-printed orthodontic aligners. American Journal of Orthodontics and Dentofacial Orthopedics, 2020, 158, e91-e98.	0.8	33
75	Characterization of DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in vitro. Journal of Biomedical Materials Research - Part A, 2006, 78A, 823-835.	2.1	31
76	Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 813-825.	1.6	31
77	Intra-articular controlled release of anti-inflammatory siRNA with biodegradable polymer microparticles ameliorates temporomandibular joint inflammation. Acta Biomaterialia, 2012, 8, 3552-3560.	4.1	29
78	A factorial analysis of the combined effects of hydrogel fabrication parameters on the in vitro swelling and degradation of oligo(poly(ethylene glycol) fumarate) hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, 3477-3487.	2.1	29
79	Chondrogenic Phenotype of Articular Chondrocytes in Monoculture and Co-Culture with Mesenchymal Stem Cells in Flow Perfusion. Tissue Engineering - Part A, 2014, 20, 2883-2891.	1.6	28
80	Phosphorous-containing polymers for regenerative medicine. Biomedical Materials (Bristol), 2014, 9, 025014.	1.7	28
81	Three-Dimensional Printing for Craniofacial Bone Tissue Engineering. Tissue Engineering - Part A, 2020, 26, 1303-1311.	1.6	28
82	Chondrogenic differentiation of neonatal human dermal fibroblasts encapsulated in alginate beads with hydrostatic compression under hypoxic conditions in the presence of bone morphogenetic proteinâ€2. Journal of Biomedical Materials Research - Part A, 2011, 98A, 412-424.	2.1	27
83	Controlled Release of Anti-inflammatory siRNA from Biodegradable Polymeric Microparticles Intended for Intra-articular Delivery to the Temporomandibular Joint. Pharmaceutical Research, 2011, 28, 1370-1384.	1.7	26
84	Evaluation of antibiotic releasing porous polymethylmethacrylate space maintainers in an infected composite tissue defect model. Acta Biomaterialia, 2013, 9, 8832-8839.	4.1	26
85	Cell-Derived Polymer/Extracellular Matrix Composite Scaffolds for Cartilage Regeneration, Part 1: Investigation of Cocultures and Seeding Densities for Improved Extracellular Matrix Deposition. Tissue Engineering - Part C: Methods, 2014, 20, 340-357.	1.1	26
86	Investigating the role of hematopoietic stem and progenitor cells in regulating the osteogenic differentiation of mesenchymal stem cells in vitro. Journal of Orthopaedic Research, 2011, 29, 1544-1553.	1.2	25
87	Design of a High-Throughput Flow Perfusion Bioreactor System for Tissue Engineering. Tissue Engineering - Part C: Methods, 2012, 18, 817-820.	1.1	25
88	Effect of build angle and layer height on the accuracy of 3-dimensional printed dental models. American Journal of Orthodontics and Dentofacial Orthopedics, 2021, 160, 451-458.e2.	0.8	25
89	Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 1222-1230.	2.1	24
90	<i>In situ</i> formation of porous space maintainers in a composite tissue defect. Journal of Biomedical Materials Research - Part A, 2012, 100A, 827-833.	2.1	22

#	Article	IF	CITATIONS
91	Development of a biodegradable bone cement for craniofacial applications. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2252-2259.	2.1	21
92	Subcutaneous tissue response and osteogenic performance of calcium phosphate nanoparticle-enriched hydrogels in the tibial medullary cavity of guinea pigs. Acta Biomaterialia, 2013, 9, 5464-5474.	4.1	21
93	Effect of temporally patterned TNF-α delivery on <i>in vitro</i> osteogenic differentiation of mesenchymal stem cells cultured on biodegradable polymer scaffolds. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1794-1813.	1.9	21
94	Accuracy and mechanical properties ofÂorthodontic models printed 3-dimensionally from calcium sulfate before and after various postprinting treatments. American Journal of Orthodontics and Dentofacial Orthopedics, 2016, 150, 1056-1062.	0.8	21
95	Biodegradable Branched Polycationic Polymers with Varying Hydrophilic Spacers for Nonviral Gene Delivery. Biomacromolecules, 2009, 10, 2436-2445.	2.6	20
96	Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomaterialia, 2010, 6, 3448-3456.	4.1	20
97	Altering Amine Basicities in Biodegradable Branched Polycationic Polymers for Nonviral Gene Delivery. Biomacromolecules, 2010, 11, 600-609.	2.6	20
98	Fabrication of Cell-Laden Macroporous Biodegradable Hydrogels with Tunable Porosities and Pore Sizes. Tissue Engineering - Part C: Methods, 2015, 21, 263-273.	1.1	20
99	Perspectives on the prevention and treatment of infection for orthopedic tissue engineering applications. Science Bulletin, 2013, 58, 4342-4348.	1.7	19
100	Flow Perfusion Co-culture of Human Mesenchymal Stem Cells and Endothelial Cells on Biodegradable Polymer Scaffolds. Annals of Biomedical Engineering, 2014, 42, 1381-1390.	1.3	19
101	Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model. Acta Biomaterialia, 2014, 10, 4574-4582.	4.1	19
102	Tissue Engineered Prevascularized Bone and Soft Tissue Flaps. Oral and Maxillofacial Surgery Clinics of North America, 2017, 29, 63-73.	0.4	19
103	Hypoxia and flow perfusion modulate proliferation and gene expression of articular chondrocytes on porous scaffolds. AICHE Journal, 2013, 59, 3158-3166.	1.8	18
104	Imaging of Poly(α-hydroxy-ester) Scaffolds with X-ray Phase-Contrast Microcomputed Tomography. Tissue Engineering - Part C: Methods, 2012, 18, 859-865.	1.1	17
105	Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 599-612.	2.1	17
106	Bone Morphogenetic Protein-2 Release from Composite Hydrogels of Oligo(poly(ethylene glycol)) Tj ETQq0 0 0 r	gBT /Overl 1.7	ock 10 Tf 50
107	Use of Porous Space Maintainers in Staged Mandibular Reconstruction. Oral and Maxillofacial Surgery Clinics of North America, 2014, 26, 143-149.	0.4	15

#	Article	IF	CITATIONS
109	Winner of the 2013 young investigator award for the society for biomaterials annual meeting and exposition, April 10–13, 2013, Boston, Massachusetts. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1225-1236.	2.1	13
110	Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites. Tissue Engineering - Part C: Methods, 2015, 21, 1216-1225.	1.1	13
111	Cephalometric evaluation of changes in vertical dimension and molar position in adult non-extraction treatment with clear aligners and traditional fixed appliances. Dental Press Journal of Orthodontics, 2021, 26, e2119360.	0.2	13
112	Wear Resistance of 3D Printed and Prefabricated Denture Teeth Opposing Zirconia. Journal of Prosthodontics, 2021, 30, 804-810.	1.7	11
113	Colour stability of 3D-printed resin orthodontic brackets. Journal of Orthodontics, 2021, 48, 241-249.	0.4	11
114	Polymer Scaffold Fabrication. , 2014, , 423-440.		10
115	Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 1485-1497.	2.1	10
116	Evaluation of the dimensional accuracy of thermoformed appliances taken from 3D printed models with varied shell thicknesses: An in vitro study. International Orthodontics, 2021, 19, 137-146.	0.6	10
117	Tissue response to composite hydrogels for vertical bone augmentation in the rat. Journal of Biomedical Materials Research - Part A, 2014, 102, 2079-2088.	2.1	9
118	Effect of print orientation on the dimensional accuracy of orthodontic aligners printed 3-dimensionally. American Journal of Orthodontics and Dentofacial Orthopedics, 2021, 160, 732-742.e1.	0.8	9

#	Article	IF	CITATIONS
127	Tissue Engineering in Oral and Maxillofacial Surgery. , 2014, , 1487-1506.		6
128	Evaluation of current additive manufacturing systems for orthodontic 3-dimensional printing. American Journal of Orthodontics and Dentofacial Orthopedics, 2021, 160, 594-602.	0.8	6
129	Development of an inÂvitro confinement test to predict the clinical handling of polymer-based injectable bone substitutes. Polymer Testing, 2013, 32, 1379-1384.	2.3	5
130	Modulation of Polyplex Release from Biodegradable Microparticles through Poly(ethylenimine) Modification and Varying Loading Concentration. Pharmaceutical Research, 2014, 31, 77-85.	1.7	5
131	Characterization of an injectable, degradable polymer for mechanical stabilization of mandibular fractures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 529-538.	1.6	5
132	Harnessing Cell–Biomaterial Interactions for Osteochondral Tissue Regeneration. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 67-104.	0.6	3
133	Effects of Electron Beam Sterilization on Mechanical Properties of a Porous Polymethylmethacrylate Space Maintenance Device. Journal of Medical Devices, Transactions of the ASME, 2015, 9, .	0.4	3
134	Tissue Engineering for Orthodontists: The Transforming Science Simplified. Seminars in Orthodontics, 2017, 23, 355-365.	0.8	2
135	Tissue engineering in oral and maxillofacial surgery. , 2020, , 1201-1220.		2
136	Toward Osteogenic Differentiation of Marrow Stromal Cells and In Vitro Production of Mineralized Extracellular Matrix onto Natural Scaffolds. , 2009, , 263-281.		2
137	Cell–Surface Interactions. Learning Materials in Biosciences, 2018, , 107-128.	0.2	1
138	Efficacy of the mini tooth positioner in improving orthodontic finishes. American Journal of Orthodontics and Dentofacial Orthopedics, 2019, 155, 844-850.	0.8	1
139	Emerging applications of 3D printing in nasoalveolar molding therapy: a narrative review. Journal of 3D Printing in Medicine, 2019, 3, 195-208.	1.0	1
140	Impact of orientation on dimensional accuracy of 3D-printed orthodontic models. Journal of Clinical Orthodontics: JCO, 2018, 52, 13-20.	0.1	1
141	Fumarate-based hydrogels in regenerative medicine applications. , 0, , 279-294.		0
142	Biomaterials in Regenerative Medicine. , 2015, , 141-149.		0
143	The Future of Bioengineering for Head and Neck Reconstruction: The Customized Free Flap. , 2019, , 269-278.		0