Daniel Romo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002641/publications.pdf

Version: 2024-02-01

		53660	82410
118	5,931	45	72
papers	citations	h-index	g-index
132	132	132	4326
132	132	132	7320
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Eukaryotic Initiation Factor 2α-independent Pathway of Stress Granule Induction by the Natural Product Pateamine A. Journal of Biological Chemistry, 2006, 281, 32870-32878.	1.6	229
2	Inhibition of Eukaryotic Translation Initiation by the Marine Natural Product Pateamine A. Molecular Cell, 2005, 20, 709-722.	4.5	220
3	Intramolecular, Nucleophile-Catalyzed Aldol-Lactonization (NCAL) Reactions: \hat{A} Catalytic, Asymmetric Synthesis of Bicyclic \hat{I}^2 -Lactones. Journal of the American Chemical Society, 2001, 123, 7945-7946.	6.6	205
4	Enantioselective, Organocatalyzed, Intramolecular Aldol Lactonizations with Keto Acids Leading to Bi― and Tricyclic βâ€Lactones and Topologyâ€Morphing Transformations. Angewandte Chemie - International Edition, 2010, 49, 9479-9483.	7.2	190
5	Methods for the synthesis of optically active \hat{l}^2 -lactones (2-oxetanones). Tetrahedron, 1999, 55, 6403-6434.	1.0	176
6	Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids. Natural Product Reports, 2011, 28, 1229.	5.2	176
7	Total Synthesis and Immunosuppressive Activity of (â°')-Pateamine A and Related Compounds:  Implementation of a β-Lactam-Based Macrocyclization. Journal of the American Chemical Society, 1998, 120, 12237-12254.	6.6	142
8	Concise Total Synthesis of (±)-Salinosporamide A, (±)-Cinnabaramide A, and Derivatives via a Bis-cyclization Process:  Implications for a Biosynthetic Pathway?. Organic Letters, 2007, 9, 2143-2146.	2.4	134
9	Concise Synthesis of Spirocyclic, Bridged \hat{I}^3 -Butyrolactones via Stereospecific, Dyotropic Rearrangements of \hat{I}^2 -Lactones Involving 1,2-Acyl and \hat{I} -Lactone Migrations. Journal of the American Chemical Society, 2008, 130, 10478-10479.	6.6	124
10	Chemo- and site-selective derivatizations of natural products enabling biological studies. Natural Product Reports, 2014, 31, 318-334.	5.2	123
11	\hat{l}^2 -Lactones: Intermediates for Natural Product Total Synthesis and New Transformations. Heterocycles, 2004, 64, 605.	0.4	123
12	Rapid assembly of complex cyclopentanes employing chiral, \hat{l}_{\pm} , \hat{l}_{\pm} -unsaturated acylammonium intermediates. Nature Chemistry, 2013, 5, 1049-1057.	6.6	121
13	Acylammonium Salts as Dienophiles in Diels–Alder/Lactonization Organocascades. Journal of the American Chemical Society, 2014, 136, 4492-4495.	6.6	120
14	Asymmetric Synthesis of Bicyclic β-Lactones via the Intramolecular, Nucleophile-Catalyzed Aldol Lactonization:  Improved Efficiency and Expanded Scope. Journal of Organic Chemistry, 2005, 70, 2835-2838.	1.7	114
15	Enantioselective Total Synthesis of (+)-Dibromophakellstatin. Journal of the American Chemical Society, 2003, 125, 6344-6345.	6.6	110
16	Bicyclic- and Tricyclic-β-lactones via Organonucleophile-Promoted Bis-Cyclizations of Keto Acids: Enantioselective Synthesis of (+)-Dihydroplakevulin. Organic Letters, 2006, 8, 4363-4366.	2.4	103
17	Potent <i>in vitro</i> and <i>in vivo</i> anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A. Molecular Cancer Therapeutics, 2009, 8, 1250-1260.	1.9	92
18	Enantioselective Strategy to the Spirocyclic Core of Palau'amine and Related Bisguanidine Marine Alkaloids. Organic Letters, 2001, 3, 1535-1538.	2.4	89

#	Article	IF	Citations
19	Bicyclic \hat{l}^2 -Lactones via Intramolecular NCAL Reactions with Cinchona Alkaloids: Effect of the C9-Substituent on Enantioselectivity and Catalyst Conformation. Synthesis, 2001, 2001, 1731-1736.	1.2	88
20	Bioinspired Total Synthesis and Human Proteasome Inhibitory Activity of (â^')-Salinosporamide A, (â^')-Homosalinosporamide A, and Derivatives Obtained via Organonucleophile Promoted Bis-cyclizations. Journal of Organic Chemistry, 2011, 76, 2-12.	1.7	88
21	Use of In Situ Generated Ketene in the Wynberg β-Lactone Synthesis: New Transformations of the Dichlorinated β-Lactone Products. Journal of Organic Chemistry, 2000, 65, 7248-7252.	1.7	84
22	Enantioselective Synthesis of (+)â€Monobromophakellin and (+)â€Phakellin: A Concise Phakellin Annulation Strategy Applicable to Palau'amine. Angewandte Chemie - International Edition, 2008, 47, 1284-1286.	7.2	83
23	Practical, Catalytic, Asymmetric Synthesis of β-Lactones via a Sequential Ketene Dimerization/Hydrogenation Process:  Inhibitors of the Thioesterase Domain of Fatty Acid Synthase. Journal of Organic Chemistry, 2006, 71, 4549-4558.	1.7	80
24	The ever-expanding role of asymmetric covalent organocatalysis in scalable, natural product synthesis. Natural Product Reports, 2014, 31, 1318-1327.	5.2	79
25	Asymmetric Organocatalysis: The Emerging Utility of α,βâ€Unsaturated Acylammonium Salts. Angewandte Chemie - International Edition, 2016, 55, 13934-13943.	7.2	79
26	Mild Arming and Derivatization of Natural Products via an In(OTf) < sub > 3 < /sub > - Catalyzed Arene lodination. Organic Letters, 2010, 12, 2104-2107.	2.4	78
27	Double Diastereoselective, Nucleophile-Catalyzed Aldol Lactonizations (NCAL) Leading to \hat{l}^2 -Lactone Fused Carbocycles and Extensions to \hat{l}^2 -Lactone Fused Tetrahydrofurans. Organic Letters, 2010, 12, 3764-3767.	2.4	77
28	Dyotropic Rearrangements of Fused Tricyclic \hat{l}^2 -Lactones: Application to the Synthesis of (\hat{a}^2)-Curcumanolide A and (\hat{a}^2)-Curcumalactone. Journal of the American Chemical Society, 2012, 134, 13348-13356.	6.6	74
29	Evidence for Separate Binding and Scaffolding Domains in the Immunosuppressive and Antitumor Marine Natural Product, Pateamine A:Â Design, Synthesis, and Activity Studies Leading to a Potent Simplified Derivative. Journal of the American Chemical Society, 2004, 126, 10582-10588.	6.6	73
30	Covalent Modification of a Cysteine Residue in the XPB Subunit of the General Transcription Factor TFIIH Through Single Epoxide Cleavage of the Transcription Inhibitor Triptolide. Angewandte Chemie - International Edition, 2015, 54, 1859-1863.	7.2	73
31	Total Synthesis of the Novel, Immunosuppressive Agent (â^')-Pateamine A fromMycalesp. Employing a β-Lactam-Based Macrocyclization. Journal of the American Chemical Society, 1998, 120, 591-592.	6.6	71
32	A1,3-strain enabled retention of chirality during bis-cyclization of \hat{l}^2 -ketoamides: total synthesis of (\hat{a}^2) -salinosporamide A and (\hat{a}^2) -homosalinosporamide A. Chemical Communications, 2010, 46, 4803.	2.2	70
33	Triptolide: reflections on two decades of research and prospects for the future. Natural Product Reports, 2021, 38, 843-860.	5.2	70
34	Direct Catalytic Asymmetric Synthesis of Nâ€Heterocycles from Commodity Acid Chlorides by Employing α,βâ€Unsaturated Acylammonium Salts. Angewandte Chemie - International Edition, 2013, 52, 13688-13693.	7.2	68
35	Total Synthesis and Comparative Analysis of Orlistat, Valilactone, and a Transposed Orlistat Derivative:  Inhibitors of Fatty Acid Synthase. Organic Letters, 2006, 8, 4497-4500.	2.4	62
36	Total Synthesis of (+)â€Omphadiol. Angewandte Chemie - International Edition, 2011, 50, 7537-7540.	7.2	62

#	Article	IF	CITATIONS
37	Simultaneous Deprotection and Purification of BOC-amines Based on Ionic Resin Capture. Journal of Organic Chemistry, 1998, 63, 3471-3473.	1.7	61
38	Inhibition of Nonsense-mediated mRNA Decay by the Natural Product Pateamine A through Eukaryotic Initiation Factor 4AIII. Journal of Biological Chemistry, 2009, 284, 23613-23621.	1.6	58
39	Pyrrole Aminoimidazole Alkaloid Metabiosynthesis with Marine Sponges <i>Agelas conifera</i> and <i>Stylissa caribica</i> . Angewandte Chemie - International Edition, 2012, 51, 4877-4881.	7.2	54
40	Bioinspired Total Synthesis of Agelastatinâ€A. Angewandte Chemie - International Edition, 2012, 51, 6870-6873.	7.2	52
41	Facile Synthesis of the Trans-Fused Azabicyclo[3.3.0]octane Core of the Palau'amines and the Tricyclic Core of the Axinellamines from a Common Intermediate. Organic Letters, 2008, 10, 3685-3688.	2.4	50
42	Studies toward (â^')-Gymnodimine:  Concise Routes to the Spirocyclic and Tetrahydrofuran Moieties. Organic Letters, 2000, 2, 763-766.	2.4	49
43	Substrate-Dependent Targeting of Eukaryotic Translation Initiation Factor 4A by Pateamine A: Negation of Domain-Linker Regulation of Activity. Chemistry and Biology, 2007, 14, 715-727.	6.2	48
44	Enantioselective Synthesis of Schulzeines B and C via a \hat{I}^2 -Lactone-Derived Surrogate for Bishomoserine Aldehyde. Organic Letters, 2009, 11, 1143-1146.	2.4	48
45	A Diastereoselective, Nucleophile-Promoted Aldol-Lactonization of Ketoacids Leading to Bicyclic- \hat{l}^2 -Lactones. Journal of Organic Chemistry, 2012, 77, 2496-2500.	1.7	48
46	A \hat{l}^2 -Lactone-Based Strategy Applied to the Total Synthesis of (8S,21S,22S,23R)- and (8R,21S,22S,23R)-Okinonellin B. Journal of Organic Chemistry, 1998, 63, 2058-2059.	1.7	47
47	Enantioselective Synthesis of Mediumâ€Sized Lactams via Chiral α,βâ€Unsaturated Acylammonium Salts. Angewandte Chemie - International Edition, 2018, 57, 6527-6531.	7.2	47
48	Synthesis of Novel \hat{I}^2 -Lactone Inhibitors of Fatty Acid Synthase. Journal of Medicinal Chemistry, 2008, 51, 5285-5296.	2.9	46
49	Simplified immunosuppressive and neuroprotective agents based on gracilin A. Nature Chemistry, 2019, 11, 342-350.	6.6	45
50	Bridging the gap between natural product synthesis and drug discovery. Natural Product Reports, 2020, 37, 1436-1453.	5 . 2	45
51	Photocatalyzed, \hat{l}^2 -Selective Hydrocarboxylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters with CO ₂ under Flow for \hat{l}^2 -Lactone Synthesis. ACS Catalysis, 2021, 11, 1309-1315.	5 . 5	45
52	Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A. Cell Chemical Biology, 2017, 24, 605-613.e5.	2.5	41
53	Isolation, Derivative Synthesis, and Structure–Activity Relationships of Antiparasitic Bromopyrrole Alkaloids from the Marine Sponge <i>Tedania brasiliensis</i> . Journal of Natural Products, 2018, 81, 188-202.	1.5	40
54	Stereodivergent, Diels–Alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application. Chemical Science, 2017, 8, 1511-1524.	3.7	39

#	Article	IF	Citations
55	Studies toward Gymnodimine:  Development of a Single-Pot Hua Reaction for the Synthesis of Highly Hindered Cyclic Imines. Organic Letters, 2001, 3, 751-754.	2.4	38
56	Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting elF4A as potential anticancer agents. Bioorganic and Medicinal Chemistry, 2014, 22, 116-125.	1.4	37
57	Practical, One-Step Synthesis of Optically Active β-Lactones via the Tandem Mukaiyama Aldolâ^'Lactonization (TMAL) Reaction. Journal of Organic Chemistry, 1998, 63, 1344-1347.	1.7	35
58	Asymmetric Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy- \hat{l}^2 -Lactones Including Facile Conversion to Tetronic Acids: Application to (+)-Maculalactone A. Journal of Organic Chemistry, 2009, 74, 4772-4781.	1.7	35
59	Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from <i>Sphingobium</i> sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers. Biochemistry, 2015, 54, 7539-7549.	1.2	32
60	A β-Lactone Route to Chiral γ-Substituted α-Amino Acids:  Application to the Concise Synthesis of (S)-α-Azidobutyro Lactone and a Natural Amino Acid. Organic Letters, 2002, 4, 533-536.	2.4	30
61	Chemical Mechanism of the Phosphotriesterase from <i>Sphingobium</i> sp. Strain TCM1, an Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants. Journal of the American Chemical Society, 2016, 138, 2921-2924.	6.6	29
62	A Stereocomplementary Approach to \hat{l}^2 -Lactones: \hat{A} Highly Diastereoselective Synthesis ofcis- \hat{l}^2 -Lactones, a \hat{l}^2 -Chloro Acid, and a Tetrahydrofuran. Organic Letters, 1999, 1, 1197-1199.	2.4	28
63	Isolation and Identification of Eukaryotic Initiation Factor 4A as a Molecular Target for the Marine Natural Product Pateamine A. Methods in Enzymology, 2007, 431, 303-324.	0.4	28
64	Synthesis, Structure and Mechanism in Immunophilin Research. Synlett, 1994, 1994, 381-392.	1.0	27
65	A Novel Actin Binding Drug with <i>In Vivo</i> Efficacy. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	27
66	Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. Cell Chemical Biology, 2021, 28, 825-834.e6.	2.5	25
67	A Single-Pot, Mild Conversion of \hat{l}^2 -Lactones to \hat{l}^2 -Lactams. Journal of Organic Chemistry, 1999, 64, 7657-7660.	1.7	24
68	Total Synthesis of (â^')-Belactosin C and Derivatives via Double Diastereoselective Tandem Mukaiyama Aldol Lactonizations. Organic Letters, 2007, 9, 1537-1540.	2.4	24
69	Alkyl Câ^'O Ring Cleavage of Bicyclic β-Lactones with Normant Reagents:  Synthesis of a Merck IND Intermediate. Organic Letters, 2007, 9, 2111-2114.	2.4	24
70	Asymmetrische Organokatalyse: α,βâ€ungesÃŧtigte Acylammoniumsalze erweisen sich als immer nÃ⅓tzlicher. Angewandte Chemie, 2016, 128, 14138-14148.	1.6	24
71	Transformation of Fused Bicyclic and Tricyclic \hat{l}^2 -Lactones to Fused \hat{l}^3 -Lactones and 3(2H)-Furanones via Ring Expansions and Oâ [*] H Insertions. Journal of Organic Chemistry, 2007, 72, 8939-8942.	1.7	22
72	Structural and Synthetic Studies of the Pateamines: Synthesis and Absolute Configuration of the Hydroxydienoate Fragment. Tetrahedron Letters, 1995, 36, 5307-5310.	0.7	21

#	Article	IF	Citations
73	Herpes Simplex Virus 2 Virion Host Shutoff Endoribonuclease Activity Is Required To Disrupt Stress Granule Formation. Journal of Virology, 2016, 90, 7943-7955.	1.5	21
74	Diastereo- and Enantioselective Synthesis of Bi- and Tricyclic $\langle i \rangle N \langle i \rangle$ -Heterocycle-Fused \hat{l}^2 -Lactones. Journal of Organic Chemistry, 2017, 82, 13161-13170.	1.7	21
75	\hat{l}^2 -Lactam congeners of orlistat as inhibitors of fatty acid synthase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2491-2494.	1.0	20
76	Synthesis of (±)â€Spongiolactone Enabling Discovery of a More Potent Derivative. Chemistry - A European Journal, 2015, 21, 1425-1428.	1.7	20
77	Derivatization of agelastatin A leading to bioactive analogs and a trifunctional probe. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2092-2097.	1.0	19
78	Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Speciesâ€. PLoS ONE, 2015, 10, e0143964.	1.1	18
79	Multicomponent, Enantioselective Michael–Michael-Aldol-β-Lactonizations Delivering Complex β-Lactones. Journal of Organic Chemistry, 2018, 83, 632-643.	1.7	18
80	Pharmacophore-Directed Retrosynthesis Applied to Rameswaralide: Synthesis and Bioactivity of <i>Sinularia</i> Natural Product Tricyclic Cores. Organic Letters, 2019, 21, 7394-7399.	2.4	18
81	Enantioselective Diels-Alder-lactamization organocascades employing a furan-based diene. Organic and Biomolecular Chemistry, 2017, 15, 3179-3183.	1.5	17
82	Total Synthesis and Anticancer Activity of (+)â€Hypercalinâ€C and Congeners. Angewandte Chemie - International Edition, 2019, 58, 2734-2738.	7.2	16
83	Enzymatic assembly of the salinosporamide \hat{I}^3 -lactam- \hat{I}^2 -lactone anticancer warhead. Nature Chemical Biology, 2022, 18, 538-546.	3.9	16
84	Utility and NMR studies of \hat{l}_{\pm},\hat{l}^2 -unsaturated acylammonium salts: synthesis of polycyclic dihydropyranones and a dihydropyridone. Tetrahedron Letters, 2015, 56, 3647-3652.	0.7	15
85	Enantioselective Synthesis of Mediumâ€Sized Lactams via Chiral α,βâ€Unsaturated Acylammonium Salts. Angewandte Chemie, 2018, 130, 6637-6641.	1.6	15
86	Pharmacophore-Directed Retrosynthesis Applied to Ophiobolin A: Simplified Bicyclic Derivatives Displaying Anticancer Activity. Organic Letters, 2020, 22, 8307-8312.	2.4	15
87	A strategy for dual inhibition of the proteasome and fatty acid synthase with belactosin C-orlistat hybrids. Bioorganic and Medicinal Chemistry, 2017, 25, 2901-2916.	1.4	14
88	Gracilin A Derivatives Target Early Events in Alzheimer's Disease: in Vitro Effects on Neuroinflammation and Oxidative Stress. ACS Chemical Neuroscience, 2019, 10, 4102-4111.	1.7	14
89	Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia. Leukemia, 2019, 33, 1663-1674.	3.3	13
90	Bioactive Seco-Lanostane-Type Triterpenoids from the Roots of <i>Leplaea mayombensis</i> Natural Products, 2017, 80, 2644-2651.	1.5	12

#	Article	IF	Citations
91	Triterpenoids from the stem bark of Vitellaria paradoxa (Sapotaceae) and derived esters exhibit cytotoxicity against a breast cancer cell line. Medicinal Chemistry Research, 2018, 27, 268-277.	1.1	12
92	Molecular Mechanism for Attractant Signaling to DHMA by E.Âcoli Tsr. Biophysical Journal, 2020, 118, 492-504.	0.2	12
93	Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacologica Sinica, 2020, 41, 1519-1524.	2.8	12
94	Role of an Active Site Loop in the Promiscuous Activities of <i>Amycolatopsis</i> sp. T-1-60 NSAR/OSBS. Biochemistry, 2014, 53, 4434-4444.	1.2	11
95	Generation and Reactivity of 2-Amido-1,3-diaminoallyl Cations: Cyclic Guanidine Annulations via Net (3) Tj ETQq1	1 0,78431 2.4	4 rgBT /Ove
96	Concise Synthesis of the Isothiourea Organocatalysts Homobenzotetramisole and Derivatives. Journal of Organic Chemistry, 2013, 78, 6291-6296.	1.7	10
97	Promiscuity of Exiguobacterium sp. AT1b o-succinylbenzoate synthase illustrates evolutionary transitions in the OSBS family. Biochemical and Biophysical Research Communications, 2014, 450, 679-684.	1.0	10
98	Quantitative chemoproteomic profiling reveals multiple target interactions of spongiolactone derivatives in leukemia cells. Chemical Communications, 2017, 53, 12818-12821.	2.2	10
99	Comparison of <i>Alicyclobacillus acidocaldarius o</i> -Succinylbenzoate Synthase to Its Promiscuous <i>N</i> -Succinylamino Acid Racemase/ <i>o</i> -Succinylbenzoate Synthase Relatives. Biochemistry, 2018, 57, 3676-3689.	1.2	9
100	Total Synthesis and Anticancer Activity of (+)â€Hypercalinâ€C and Congeners. Angewandte Chemie, 2019, 131, 2760-2764.	1.6	9
101	Epithelial-mesenchymal transition sensitizes breast cancer cells to cell death via the fungus-derived sesterterpenoid ophiobolin A. Scientific Reports, 2021, 11, 10652.	1.6	9
102	Translation initiation factors GleIF4E2 and GleIF4A can interact directly with the components of the pre-initiation complex to facilitate translation initiation in Giardia lamblia. Molecular and Biochemical Parasitology, 2020, 236, 111258.	0.5	8
103	(â°')-Homosalinosporamide A and Its Mode of Proteasome Inhibition: An X-ray Crystallographic Study. Marine Drugs, 2018, 16, 240.	2.2	7
104	Investigation of the mechanism of action of a potent pateamine A analog, des-methyl, des-amino pateamine A (DMDAPatA). Biochemistry and Cell Biology, 2020, 98, 502-510.	0.9	7
105	Editorial: Strategies for cellular target identification of natural products. Natural Product Reports, 2016, 33, 592-594.	5. 2	6
106	Natural product derivatization with β-lactones, β-lactams and epoxides toward â€~infinite' binders. Tetrahedron, 2019, 75, 3348-3354.	1.0	6
107	Enantioselective, Organocatalytic Strategy for the Oxazolomycin Core: Formal Synthesis of (+)-Neooxazolomycin. Organic Letters, 2020, 22, 9282-9286.	2.4	6
108	Telescoped Synthesis of γâ€Bromoâ€Î²â€Lactones from Allylic Bromides Employing Carbon Dioxide. Israel Journal of Chemistry, 2017, 57, 335-339.	1.0	5

#	Article	IF	CITATIONS
109	Antiproliferative activity of naphthoquinones and indane carboxylic acids from lapachol against a panel of human cancer cell lines. Medicinal Chemistry Research, 2020, 29, 1058-1066.	1.1	5
110	Multicomponent Enantioselective Synthesis of Tetrahydropyridazinones Employing Chiral $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acylammonium Salts. Organic Letters, 2021, 23, 6622-6627.	2.4	3
111	Synthetic Tigliane Intermediates Engage Thiols to Induce Potent Cell Line Selective Antiâ€Cancer Activity. Chemistry - A European Journal, 2020, 26, 13372-13377.	1.7	3
112	Synthetic strategies for mining the information-rich content of natural products for biology and medicine. Natural Product Reports, 2020, 37, 1393-1394.	5.2	2
113	Synthesis of agelastatin A and derivatives premised on a hidden symmetry element leading to analogs displaying anticancer activity. Tetrahedron, 2021, 94, 132340.	1.0	2
114	Necator americanus Ancylostoma Secreted Protein-2 (Na-ASP-2) Binds an Ascaroside (ascr#3) in Its Fatty Acid Binding Site. Frontiers in Chemistry, 2020, 8, 608296.	1.8	2
115	Second-Shell Amino Acid R266 Helps Determine <i>N</i> Specificity in Promiscuous <i>N</i> Succinylamino Acid Racemase/ <i>Specificity in Promiscuous <i>N</i>Succinylamino Acid Racemase/<i>Succinylbenzoate Synthase Enzymes. Biochemistry, 2021, 60, 3829-3840.</i></i>	1.2	2
116	Des-methyl, Des-amino pateamine A, a Synthetic Analogue of Marine Natural Product Pateamine A, Sensitizes Non-small Cell Lung Cancer Cells to Radiation and Enhances BAX Expression. International Journal of Radiation Oncology Biology Physics, 2012, 84, S701-S702.	0.4	1
117	Total Synthesis of Marine Natural Products Driven by Novel Structure, Potent Biological Activity, and/or Synthetic Methodology. , 2000, , 103-148.		1
118	In vitro structure/activity relationship studies of second generation derivatives of the translation inhibitor desmethyl, desaminoâ€Pateamine A. FASEB Journal, 2013, 27, lb69.	0.2	0