Douglas P Millay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90024/publications.pdf

Version: 2024-02-01

44 papers

3,380 citations

201385 27 h-index 243296 44 g-index

52 all docs 52 docs citations

52 times ranked 4032 citing authors

#	Article	IF	CITATIONS
1	All for One and One for All: Regenerating Skeletal Muscle. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040824.	2.3	9
2	Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Experimental Cell Research, 2022, 415, 113134.	1.2	20
3	Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nature Communications, 2021, 12, 495.	5.8	32
4	$TGF\hat{I}^2$ signaling curbs cell fusion and muscle regeneration. Nature Communications, 2021, 12, 750.	5.8	61
5	FOXF1 is required for the oncogenic properties of PAX3-FOXO1 in rhabdomyosarcoma. Oncogene, 2021, 40, 2182-2199.	2.6	15
6	Skeletal muscle fibers count on nuclear numbers for growth. Seminars in Cell and Developmental Biology, 2021, 119, 3-10.	2.3	15
7	Fibroblast fusion to the muscle fiber regulates myotendinous junction formation. Nature Communications, 2021, 12, 3852.	5.8	35
8	Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genetics, 2021, 17, e1009907.	1.5	12
9	ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Developmental Cell, 2021, 56, 3349-3363.e6.	3.1	45
10	DOCK3 is a dosage-sensitive regulator of skeletal muscle and Duchenne muscular dystrophy-associated pathologies. Human Molecular Genetics, 2020, 29, 2855-2871.	1.4	10
11	Myonuclear content regulates cell size with similar scaling properties in mice and humans. Nature Communications, 2020, 11, 6288.	5.8	49
12	Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nature Communications, 2020, 11, 6374.	5.8	187
13	Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nature Communications, 2020, 11, 6287.	5.8	57
14	Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight, 2020, 5, .	2.3	24
15	Lipid Mixing Assay for Murine Myoblast Fusion and Other Slow Cell-cell Fusion Processes. Bio-protocol, 2020, 10, e3544.	0.2	2
16	Cell Fusion: Merging Membranes and Making Muscle. Trends in Cell Biology, 2019, 29, 964-973.	3.6	91
17	Dilated cardiomyopathy-mediated heart failure induces a unique skeletal muscle myopathy with inflammation. Skeletal Muscle, 2019, 9, 4.	1.9	12
18	Myomaker and Myomerger Work Independently to Control Distinct Steps of Membrane Remodeling during Myoblast Fusion. Biophysical Journal, 2019, 116, 367a.	0.2	1

#	Article	IF	CITATIONS
19	Proteasome inhibition preserves longitudinal growth of denervated muscle and prevents neonatal neuromuscular contractures. JCI Insight, 2019, 4, .	2.3	23
20	Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. ELife, 2019, 8, .	2.8	78
21	Myoblast fusion confusion: the resolution begins. Skeletal Muscle, 2018, 8, 3.	1.9	91
22	Myomaker and Myomerger Work Independently to Control Distinct Steps of Membrane Remodeling during Myoblast Fusion. Developmental Cell, 2018, 46, 767-780.e7.	3.1	114
23	Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nature Communications, 2017, 8, 15665.	5.8	186
24	Insights into the localization and function of myomaker during myoblast fusion. Journal of Biological Chemistry, 2017, 292, 17272-17289.	1.6	39
25	In <i>vivo</i> myomakerâ€mediated heterologous fusion and nuclear reprogramming. FASEB Journal, 2017, 31, 400-411.	0.2	14
26	Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy. ELife, 2017, 6, .	2.8	118
27	Structure–function analysis of myomaker domains required for myoblast fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2116-2121.	3.3	65
28	Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells. PLoS ONE, 2016, 11, e0152129.	1.1	11
29	Na ⁺ Dysregulation Coupled with Ca ²⁺ Entry through NCX1 Promotes Muscular Dystrophy in Mice. Molecular and Cellular Biology, 2014, 34, 1991-2002.	1.1	32
30	Myomaker is essential for muscle regeneration. Genes and Development, 2014, 28, 1641-1646.	2.7	141
31	Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 2013, 499, 301-305.	13.7	440
32	Making Muscle or Mitochondria by Selective Splicing of PGC-1α. Cell Metabolism, 2013, 17, 3-4.	7.2	20
33	A Mouse Model of Rhabdomyosarcoma Originating from the Adipocyte Lineage. Cancer Cell, 2012, 22, 536-546.	7.7	109
34	Wnt Signaling Activation in Adipose Progenitors Promotes Insulin-Independent Muscle Glucose Uptake. Cell Metabolism, 2012, 15, 492-504.	7.2	65
35	Magnetic resonance imaging assessment of cardiac dysfunction in \hat{l} -sarcoglycan null mice. Neuromuscular Disorders, 2011, 21, 68-73.	0.3	12
36	CREST - a large and diverse superfamily of putative transmembrane hydrolases. Biology Direct, 2011, 6, 37.	1.9	74

#	Article	IF	CITATION
37	Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. Journal of Clinical Investigation, 2011, 121, 1044-1052.	3.9	157
38	Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscular Disorders, 2010, 20, 753-760.	0.3	52
39	Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19023-19028.	3.3	184
40	Genetic Manipulation of Dysferlin Expression in Skeletal Muscle. American Journal of Pathology, 2009, 175, 1817-1823.	1.9	54
41	Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nature Medicine, 2008, 14, 442-447.	15.2	324
42	Genetic Disruption of Calcineurin Improves Skeletal Muscle Pathology and Cardiac Disease in a Mouse Model of Limb-Girdle Muscular Dystrophy. Journal of Biological Chemistry, 2007, 282, 10068-10078.	1.6	33
43	Age-Dependent Effect of Myostatin Blockade on Disease Severity in a Murine Model of Limb-Girdle Muscular Dystrophy. American Journal of Pathology, 2006, 168, 1975-1985.	1.9	94
44	Genetic Loss of Calcineurin Blocks Mechanical Overload-induced Skeletal Muscle Fiber Type Switching but Not Hypertrophy. Journal of Biological Chemistry, 2004, 279, 26192-26200.	1.6	160