
Mingming Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002303/publications.pdf

Version: 2024-02-01

MINCMING TONG

#	Article	IF	CITATIONS
1	Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing. 3D Printing and Additive Manufacturing, 2023, 10, 749-761.	2.9	6
2	Computational modelling of dynamic recrystallisation of Ni-based superalloy during linear friction welding. International Journal of Advanced Manufacturing Technology, 2022, 119, 4461-4484.	3.0	1
3	Towards a process-structure model for Ti-6Al-4V during additive manufacturing. Journal of Manufacturing Processes, 2021, 61, 428-439.	5.9	33
4	Industrial Applications of Smoothed Particle Hydrodynamics. International Journal of Computational Fluid Dynamics, 2021, 35, 1-2.	1.2	3
5	Dissolution of delta phase in Ni-based superalloy during linear friction welding: integrated multiphysics computational process modelling. International Journal of Advanced Manufacturing Technology, 2021, 116, 241-258.	3.0	2
6	Material Characterisation and Computational Thermal Modelling of Electron Beam Powder Bed Fusion Additive Manufacturing of Ti2448 Titanium Alloy. Materials, 2021, 14, 7359.	2.9	5
7	Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing. Additive Manufacturing, 2020, 36, 101507.	3.0	29
8	Prediction of Microstructure Evolution for Additive Manufacturing of Ti-6Al-4V. Procedia Manufacturing, 2020, 47, 1178-1183.	1.9	13
9	Data on a computationally efficient approximation of part-powder conduction as surface free convection in powder bed fusion process modelling. Data in Brief, 2019, 27, 104559.	1.0	9
10	Resolution, energy and time dependency on layer scaling in finite element modelling of laser beam powder bed fusion additive manufacturing. Additive Manufacturing, 2019, 28, 610-620.	3.0	40
11	Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nature Communications, 2018, 9, 5414.	12.8	158
12	Elimination of porosity in bulk metallic glass castings using hot isostatic pressing. Journal of Non-Crystalline Solids, 2017, 468, 5-11.	3.1	11
13	Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization. Langmuir, 2017, 33, 3839-3846.	3.5	3
14	Identification of key liquid metal flow features in the physical conditioning of molten aluminium alloy with high shear processing. Computational Materials Science, 2017, 131, 35-43.	3.0	11
15	The Scale-Up of High Shear Processing for the Purification of Recycled Molten Scrap Aluminium Alloy: Key Features of Fluid Flow. Minerals, Metals and Materials Series, 2017, , 1123-1129.	0.4	2
16	An integrated model for the post-solidification shape and grain morphology of fusion welds. International Journal of Heat and Mass Transfer, 2015, 85, 667-678.	4.8	16
17	Modelling the creation and destruction of columnar and equiaxed zones during solidification and melting in multi-pass welding of steel. Computational Materials Science, 2015, 97, 285-294.	3.0	23
18	An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. International Journal of Heat and Mass Transfer, 2014, 73, 284-292.	4.8	36

MINGMING TONG

#	Article	IF	CITATIONS
19	Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation. Jom, 2013, 65, 99-106.	1.9	13
20	A Multi-Scale Approach to Simulate Solidification Structure Evolution and Solute Segregation in a Weld Pool. Journal of Algorithms and Computational Technology, 2013, 7, 489-507.	0.7	5
21	Smoothed particle hydrodynamics modelling of the fluid flow and heat transfer in the weld pool during laser spot welding. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012080.	0.6	11
22	The size of films in dry foams. Journal of Physics Condensed Matter, 2010, 22, 155109.	1.8	2
23	Modelling compressible gas flow near the nozzle of a gas atomiser using a new unified model. Computers and Fluids, 2009, 38, 1183-1190.	2.5	14
24	Direct numerical simulation of melt–gas hydrodynamic interactions during the early stage of atomisation of liquid intermetallic. Journal of Materials Processing Technology, 2008, 202, 419-427.	6.3	22
25	Direct Modeling of the Simultaneous Flow of Compressible Atomizing Gas Jets and a Weakly Compressible Liquid Intermetallic Stream During Gas Atomization. Materials Research Society Symposia Proceedings, 2008, 1128, 55201.	0.1	Ο
26	Verification of a front-tracking model of two-fluid interface Kelvin-Helmholtz instability by study of travelling waves. Communications in Numerical Methods in Engineering, 2007, 24, 1171-1181.	1.3	7
27	Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite–ferrite transformation. Acta Materialia, 2006, 54, 1265-1278.	7.9	68
28	A q-state Potts model-based Monte Carlo method used to model the isothermal austenite?ferrite transformation under non-equilibrium interface condition. Acta Materialia, 2005, 53, 1485-1497.	7.9	17
29	Temporal oscillatory behavior in deformation induced ferrite transformation in an Fe–C binary system. Scripta Materialia, 2004, 50, 909-913.	5.2	16
30	Monte carlo-method simulation of the deformation-induced ferrite transformation in the Fe-C system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1565-1577.	2.2	43
31	Modeling the austenite–ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Materialia, 2004, 52, 1155-1162.	7.9	42
32	Modeling the austenite-ferrite isothermal transformation in an Fe-C binary system and experimental verification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3111-3115.	2.2	9