
Denise M Monack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440, 228-232.	13.7	2,663
2	Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature, 2004, 430, 213-218.	13.7	1,627
3	Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nature Reviews Immunology, 2007, 7, 31-40.	10.6	791
4	Macrophage-dependent induction of theSalmonellapathogenicity island 2 type III secretion system and its role in intracellular survival. Molecular Microbiology, 1998, 30, 175-188.	1.2	563
5	Differential Requirement for Caspase-1 Autoproteolysis in Pathogen-Induced Cell Death and Cytokine Processing. Cell Host and Microbe, 2010, 8, 471-483.	5.1	514
6	Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against <i>Salmonella</i> . Journal of Experimental Medicine, 2010, 207, 1745-1755.	4.2	491
7	Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Reviews Microbiology, 2004, 2, 747-765.	13.6	473
8	Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature, 2012, 490, 288-291.	13.7	466
9	Absent in melanoma 2 is required for innate immune recognition of <i>Francisella tularensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9771-9776.	3.3	454
10	Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature Immunology, 2008, 9, 1171-1178.	7.0	428
11	Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. Journal of Experimental Medicine, 2005, 202, 1043-1049.	4.2	375
12	Salmonella typhimurium Persists within Macrophages in the Mesenteric Lymph Nodes of Chronically Infected Nramp1+/+ Mice and Can Be Reactivated by IFNγ Neutralization. Journal of Experimental Medicine, 2004, 199, 231-241.	4.2	366
13	A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell Host and Microbe, 2018, 24, 296-307.e7.	5.1	329
14	Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions. Cell Reports, 2019, 26, 2509-2520.e4.	2.9	316
15	Genome-Wide Screen for Salmonella Genes Required for Long-Term Systemic Infection of the Mouse. PLoS Pathogens, 2006, 2, e11.	2.1	300
16	In vivo negative selection screen identifies genes required for Francisella virulence. Proceedings of the United States of America, 2007, 104, 6037-6042.	3.3	298
17	Type I interferon signaling is required for activation of the inflammasome during Francisella infection. Journal of Experimental Medicine, 2007, 204, 987-994.	4.2	291
18	<i>Salmonella</i> Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5044-51.	3.3	268

#	Article	IF	CITATIONS
19	Host Transmission of <i>Salmonella enterica</i> Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota. Infection and Immunity, 2008, 76, 403-416.	1.0	263
20	Phosphorylation of NLRC4 is critical for inflammasome activation. Nature, 2012, 490, 539-542.	13.7	254
21	Caspase-1-Mediated Activation of Interleukin-1β (IL-1β) and IL-18 Contributes to Innate Immune Defenses against Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2006, 74, 4922-4926.	1.0	236
22	Molecular mechanisms of inflammasome activation during microbial infections. Immunological Reviews, 2011, 243, 174-190.	2.8	222
23	Salmonella Exploits Caspase-1 to Colonize Peyer's Patches in a Murine Typhoid Model. Journal of Experimental Medicine, 2000, 192, 249-258.	4.2	219
24	TLR Signaling Is Required for Salmonella typhimurium Virulence. Cell, 2011, 144, 675-688.	13.5	217
25	Innate immune response to <i>Salmonella typhimurium</i> , a model enteric pathogen. Gut Microbes, 2012, 3, 62-70.	4.3	194
26	Salmonella Require the Fatty Acid Regulator PPARδfor the Establishment of a Metabolic Environment Essential for Long-Term Persistence. Cell Host and Microbe, 2013, 14, 171-182.	5.1	186
27	Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2. Molecular Microbiology, 1997, 24, 155-167.	1.2	180
28	Identification of MglA-Regulated Genes Reveals Novel Virulence Factors in Francisella tularensis. Infection and Immunity, 2006, 74, 6642-6655.	1.0	165
29	cGAS and Ifi204 Cooperate To Produce Type I IFNs in Response to <i>Francisella</i> Infection. Journal of Immunology, 2015, 194, 3236-3245.	0.4	162
30	Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. ELife, 2016, 5, e13663.	2.8	154
31	virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Molecular Microbiology, 2003, 48, 385-400.	1.2	152
32	Type I IFN Signaling Constrains IL-17A/F Secretion by γδT Cells during Bacterial Infections. Journal of Immunology, 2010, 184, 3755-3767.	0.4	134
33	The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nature Communications, 2018, 9, 996.	5.8	132
34	Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin. Journal of Immunology, 2015, 195, 815-819.	0.4	131
35	NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Seminars in Immunology, 2009, 21, 199-207.	2.7	125
36	<i>Salmonella</i> 's long-term relationship with its host. FEMS Microbiology Reviews, 2012, 36, 600-615.	3.9	123

#	Article	IF	CITATIONS
37	Complement pathway amplifies caspase-11–dependent cell death and endotoxin-induced sepsis severity. Journal of Experimental Medicine, 2016, 213, 2365-2382.	4.2	120
38	Shedding light on Salmonella carriers. Trends in Microbiology, 2012, 20, 320-327.	3.5	119
39	The Salmonella SPI2 Effector Ssel Mediates Long-Term Systemic Infection by Modulating Host Cell Migration. PLoS Pathogens, 2009, 5, e1000671.	2.1	116
40	Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1. Cellular Microbiology, 2001, 3, 825-837.	1.1	108
41	Bacterial recognition pathways that lead to inflammasome activation. Immunological Reviews, 2015, 265, 112-129.	2.8	103
42	Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 130, 160-169.	0.9	101
43	Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis. Cellular Microbiology, 2011, 13, 1586-1600.	1.1	95
44	The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Molecular Microbiology, 2002, 41, 861-872.	1.2	93
45	The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cellular Microbiology, 2002, 4, 315-328.	1.1	91
46	Toll-like Receptor and Inflammasome Signals Converge to Amplify the Innate Bactericidal Capacity of T Helper 1 Cells. Immunity, 2014, 40, 213-224.	6.6	90
47	Contribution of Flagellin Pattern Recognition to Intestinal Inflammation during <i>Salmonella enterica</i> Serotype Typhimurium Infection. Infection and Immunity, 2009, 77, 1904-1916.	1.0	86
48	Salmonella-Driven Polarization of Granuloma Macrophages Antagonizes TNF-Mediated Pathogen Restriction during Persistent Infection. Cell Host and Microbe, 2020, 27, 54-67.e5.	5.1	86
49	Variation in Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time. PLoS ONE, 2015, 10, e0142825.	1.1	84
50	Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nature Protocols, 2021, 16, 5171-5192.	5.5	83
51	Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors. Cellular Microbiology, 2007, 9, 2543-2551.	1.1	81
52	<i>Francisella tularensis</i> Schu S4 O-Antigen and Capsule Biosynthesis Gene Mutants Induce Early Cell Death in Human Macrophages. Infection and Immunity, 2011, 79, 581-594.	1.0	81
53	Pseudogenization of the Secreted Effector Gene ssel Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell Host and Microbe, 2017, 21, 182-194.	5.1	80
54	Salmonella persistence and transmission strategies. Current Opinion in Microbiology, 2012, 15, 100-107.	2.3	78

#	Article	IF	CITATIONS
55	Salmonella Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase to Direct Macrophage Polarization. Cell Host and Microbe, 2020, 27, 41-53.e6.	5.1	78
56	Mig-14 is an inner membrane-associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection. Molecular Microbiology, 2004, 55, 954-972.	1.2	77
57	Intraspecies Competition for Niches in the Distal Gut Dictate Transmission during Persistent Salmonella Infection. PLoS Pathogens, 2014, 10, e1004527.	2.1	73
58	Role of disease-associated tolerance in infectious superspreaders. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15780-15785.	3.3	70
59	T6SS: The bacterial "fight club" in the host gut. PLoS Pathogens, 2017, 13, e1006325.	2.1	70
60	Noncanonical Inflammasomes: Caspase-11 Activation and Effector Mechanisms. PLoS Pathogens, 2013, 9, e1003144.	2.1	67
61	Non-typhoidal Salmonella Typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis. Pathogens and Disease, 2015, 73, .	0.8	65
62	Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3688-3694.	3.3	62
63	Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLoS Biology, 2019, 17, e3000059.	2.6	62
64	Francisella infection triggers activation of the AIM2 inflammasome in murine dendritic cells. Cellular Microbiology, 2012, 14, 71-80.	1.1	51
65	<i>Francisella Tularensis: Activation of the Inflammasome</i> . Annals of the New York Academy of Sciences, 2007, 1105, 219-237.	1.8	46
66	The complex interactions of bacterial pathogens and host defenses. Current Opinion in Microbiology, 2013, 16, 1-3.	2.3	43
67	Host inflammasome defense mechanisms and bacterial pathogen evasion strategies. Current Opinion in Immunology, 2019, 60, 63-70.	2.4	36
68	Retinoic Acid and Lymphotoxin Signaling Promote Differentiation of Human Intestinal M Cells. Gastroenterology, 2020, 159, 214-226.e1.	0.6	35
69	Innate Immune Recognition of Francisella Tularensis: Activation of Type-I Interferons and the Inflammasome. Frontiers in Microbiology, 2011, 2, 16.	1.5	34
70	Helicobacter and Salmonella Persistent Infection Strategies. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010348-a010348.	2.9	34
71	The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cellular Microbiology, 2011, 13, 1618-1637.	1.1	33
72	Revisiting Caspase-11 Function in Host Defense. Cell Host and Microbe, 2013, 14, 9-14.	5.1	29

#	Article	IF	CITATIONS
73	The Systemic Immune State of Super-shedder Mice Is Characterized by a Unique Neutrophil-dependent Blunting of TH1 Responses. PLoS Pathogens, 2013, 9, e1003408.	2.1	29
74	Upregulation of CD47 Is a Host Checkpoint Response to Pathogen Recognition. MBio, 2020, 11, .	1.8	29
75	A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integrative Biology (United Kingdom), 2014, 6, 438-449.	0.6	28
76	Spraying Small Water Droplets Acts as a Bacteriocide. QRB Discovery, 2020, 1, .	0.6	25
77	Escalating Threat Levels of Bacterial Infection Can Be Discriminated by Distinct MAPK and NF-ήB Signaling Dynamics in Single Host Cells. Cell Systems, 2019, 8, 183-196.e4.	2.9	23
78	Coordinate actions of innate immune responses oppose those of the adaptive immune system during <i>Salmonella</i> infection of mice. Science Signaling, 2016, 9, ra4.	1.6	22
79	A Salmonella Typhi RNA thermosensor regulates virulence factors and innate immune evasion in response to host temperature. PLoS Pathogens, 2021, 17, e1009345.	2.1	18
80	A Rapid Caspase-11 Response Induced by IFNÎ ³ Priming Is Independent of Guanylate Binding Proteins. IScience, 2020, 23, 101612.	1.9	17
81	Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathogens, 2020, 16, e1008763.	2.1	15
82	Editorial: Bacterial Exotoxins: How Bacteria Fight the Immune System. Frontiers in Immunology, 2016, 7, 300.	2.2	14
83	LysMD3 is a type II membrane protein without an role in the response to a range of pathogens. Journal of Biological Chemistry, 2018, 293, 6022-6038.	1.6	11
84	Policing the cytosol—bacterial-sensing inflammasome receptors and pathways. Current Opinion in Immunology, 2013, 25, 34-39.	2.4	9
85	Cell-Intrinsic Defense at the Epithelial Border Wall: Salmonella Pays the Price. Immunity, 2017, 46, 522-524.	6.6	6
86	Structure and Function of REP34 Implicates Carboxypeptidase Activity in Francisella tularensis Host Cell Invasion. Journal of Biological Chemistry, 2014, 289, 30668-30679.	1.6	5
87	Editorial: Protein Export and Secretion Among Bacterial Pathogens. Frontiers in Cellular and Infection Microbiology, 2019, 9, 473.	1.8	5
88	The Battle in the Gut. Immunity, 2014, 40, 173-175.	6.6	4
89	Creating a RAW264.7 CRISPR-Cas9 Genome Wide Library. Bio-protocol, 2017, 7, .	0.2	4
90	A lipid arsenal to control inflammation. Science, 2016, 352, 1173-1174.	6.0	2

6

#	Article	IF	CITATIONS
91	Recognition of a unique partner. Nature, 2011, 477, 543-544.	13.7	1
92	Microbial metabolite triggers antimicrobial defense. Science, 2015, 348, 1207-1208.	6.0	1
93	Stanley Falkow (1934–2018). Science, 2018, 360, 1077-1077.	6.0	1
94	Editorial overview: The fortunate students, a tribute to the fortunate professor. Current Opinion in Microbiology, 2020, 54, iii-vi.	2.3	0
95	Intracytosolic Sensing of Pathogens: Nucleic Acid Receptors, NLRs, and the Associated Responses during Infections and Autoinflammatory Diseases. , 0, , 153-169.		0