Stephen C Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9002153/publications.pdf

Version: 2024-02-01

272 papers

14,399 citations

14644 66 h-index 24961 109 g-index

284 all docs

284 docs citations

times ranked

284

13330 citing authors

#	Article	IF	CITATIONS
1	Comparative Study of Oxygen Diffusion in Polyethylene Terephthalate and Polyethylene Furanoate Using Molecular Modeling: Computational Insights into the Mechanism for Gas Transport in Bulk Polymer Systems. Macromolecules, 2022, 55, 498-510.	2.2	14
2	Structural dynamics of Schottky and Frenkel defects in ThO ₂ : a density-functional theory study. Journal of Materials Chemistry A, 2022, 10, 1861-1875.	5.2	9
3	Surface chemistry and porosity engineering through etching reveal ultrafast oxygen reduction kinetics below 400°C in B-site exposed (La,Sr)(Co,Fe)O3 thin-films. Journal of Power Sources, 2022, 523, 230983.	4.0	8
4	SurfinPy 2.0: A Phase Diagram Generator for Surfaces and Bulk Phases. Journal of Open Source Software, 2022, 7, 4014.	2.0	1
5	Molecular simulation of hydrogen storage and transport in cellulose. Molecular Simulation, 2021, 47, 170-179.	0.9	3
6	DL_MONTE: a multipurpose code for Monte Carlo simulation. Molecular Simulation, 2021, 47, 131-151.	0.9	19
7	Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. Journal of Materials Chemistry A, 2021, 9, 6487-6498.	5.2	44
8	Partially Anion-Ordered Cerium Niobium Oxynitride Perovskite Phase with a Small Band Gap. Chemistry of Materials, 2021, 33, 4045-4056.	3.2	1
9	Use of Interplay between Aâ€Site Nonâ€Stoichiometry and Hydroxide Doping to Deliver Novel Protonâ€Conducting Perovskite Oxides. Advanced Energy Materials, 2021, 11, 2101337.	10.2	11
10	Unraveling the Impact of Graphene Addition to Thermoelectric SrTiO ₃ and La-Doped SrTiO ₃ Materials: A Density Functional Theory Study. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41303-41314.	4.0	14
11	Bacteriophage M13 Aggregation on a Microhole Poly(ethylene terephthalate) Substrate Produces an Anionic Current Rectifier: Sensitivity toward Anionic versus Cationic Guests. ACS Applied Bio Materials, 2020, 3, 512-521.	2.3	11
12	Thermodynamic Evolution of Cerium Oxide Nanoparticle Morphology Using Carbon Dioxide. Journal of Physical Chemistry C, 2020, 124, 23210-23220.	1.5	13
13	Quantifying the impact of disorder on Li-ion and Na-ion transport in perovskite titanate solid electrolytes for solid-state batteries. Journal of Materials Chemistry A, 2020, 8, 19603-19611.	5.2	15
14	Accuracy of Hybrid Functionals with Non-Self-Consistent Kohn–Sham Orbitals for Predicting the Properties of Semiconductors. Journal of Chemical Theory and Computation, 2020, 16, 3543-3557.	2.3	17
15	The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. Journal of the American Chemical Society, 2020, 142, 11060-11071.	6.6	107
16	The energetics of carbonated PuO ₂ surfaces affects nanoparticle morphology: a DFT+ <i>U</i> study. Physical Chemistry Chemical Physics, 2020, 22, 7728-7737.	1.3	8
17	Strongly Bound Surface Water Affects the Shape Evolution of Cerium Oxide Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 3577-3588.	1.5	26
18	The usefulness of molecular-dynamics simulations in clarifying the activation enthalpy of oxygen-vacancy migration in the perovskite oxide BaTiO ₃ . Physical Chemistry Chemical Physics, 2020, 22, 5413-5417.	1.3	12

#	Article	IF	CITATIONS
19	Assessing molecular simulation for the analysis of lipid monolayer reflectometry. Journal of Physics Communications, 2019, 3, 075001.	0.5	9
20	Defect segregation facilitates oxygen transport at fluorite UO ₂ grain boundaries. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190026.	1.6	12
21	The role of dopant segregation on the oxygen vacancy distribution and oxygen diffusion in CeO ₂ grain boundaries *. JPhys Energy, 2019, 1, 042005.	2.3	12
22	Computer-Aided Design of Nanoceria Structures as Enzyme Mimetic Agents: The Role of Bodily Electrolytes on Maximizing Their Activity. ACS Applied Bio Materials, 2019, 2, 1098-1106.	2.3	25
23	Thermodynamics, Electronic Structure, and Vibrational Properties of Snn(S1–xSex)m Solid Solutions for Energy Applications. Chemistry of Materials, 2019, 31, 3672-3685.	3.2	11
24	Impact of Hydrogen on the Intermediate Oxygen Clusters and Diffusion in Fluorite Structured UO2+x. Inorganic Chemistry, 2019, 58, 3774-3779.	1.9	3
25	Bayesian determination of the effect of a deep eutectic solvent on the structure of lipid monolayers. Physical Chemistry Chemical Physics, 2019, 21, 6133-6141.	1.3	9
26	Living in the salt-cocrystal continuum: indecisive organic complexes with thermochromic behaviour. CrystEngComm, 2019, 21, 1626-1634.	1.3	28
27	surfinpy: A Surface Phase Diagram Generator. Journal of Open Source Software, 2019, 4, 1210.	2.0	7
28	An introduction to classical molecular dynamics simulation for experimental scattering users. Journal of Applied Crystallography, 2019, 52, 665-668.	1.9	3
29	Particle Morphology and Lithium Segregation to Surfaces of the Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte. Chemistry of Materials, 2018, 30, 3019-3027.	3.2	80
30	Prospects for Engineering Thermoelectric Properties in La _{1/3} NbO ₃ Ceramics Revealed via Atomic-Level Characterization and Modeling. Inorganic Chemistry, 2018, 57, 45-55.	1.9	9
31	An atomistic building block description of C-S-H - Towards a realistic C-S-H model. Cement and Concrete Research, 2018, 107, 221-235.	4.6	78
32	Combined EXAFS and ab initio study of copper complex geometries adsorbed on natural illite. Applied Clay Science, 2018, 152, 73-82.	2.6	3
33	Atomic-Level Characterization of Thermoelectric La1/3NbO3. Microscopy and Microanalysis, 2018, 24, 1534-1535.	0.2	0
34	The impact of tilt grain boundaries on the thermal transport in perovskite SrTiO ₃ layered nanostructures. A computational study. Nanoscale, 2018, 10, 15010-15022.	2.8	14
35	The critical role of hydrogen on the stability of oxy-hydroxyl defect clusters in uranium oxide. Journal of Materials Chemistry A, 2018, 6, 11362-11369.	5. 2	17
36	pylj: A teaching tool for classical atomistic simulation. The Journal of Open Source Education, 2018, 1, 19.	0.2	2

#	Article	IF	CITATIONS
37	Carbonation of Hydrous Materials at the Molecular Level: A Time of Flight-Secondary Ion Mass Spectrometry, Raman and Density Functional Theory Study. Crystal Growth and Design, 2017, 17, 1036-1044.	1.4	16
38	Water Adsorption on AnO \langle sub \rangle 2 \langle /sub \rangle {111}, {110}, and {100} Surfaces (An = U and Pu): A Density Functional Theory + \langle i \rangle U \langle li \rangle Study. Journal of Physical Chemistry C, 2017, 121, 1675-1682.	1.5	48
39	Lattice dynamics of the tin sulphides SnS ₂ , SnS and Sn ₂ S ₃ : vibrational spectra and thermal transport. Physical Chemistry Chemical Physics, 2017, 19, 12452-12465.	1.3	187
40	Structure and Properties of Some Layered U ₂ O ₅ Phases: A Density Functional Theory Study. Inorganic Chemistry, 2017, 56, 4468-4473.	1.9	16
41	Atomic-scale characterization of thermoelectric oxides using high spatial and energy resolution STEM-EELS. Microscopy and Microanalysis, 2017, 23, 370-371.	0.2	0
42	: A force field database for cementitious materials including validations, applications and opportunities. Cement and Concrete Research, 2017, 102, 68-89.	4.6	186
43	Structural, Electronic, and Transport Properties of Hybrid SrTiO ₃ -Graphene and Carbon Nanoribbon Interfaces. Chemistry of Materials, 2017, 29, 7364-7370.	3.2	14
44	A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor. Nature Communications, 2017, 8, 1800.	5.8	83
45	Concurrent La and A-Site Vacancy Doping Modulates the Thermoelectric Response of SrTiO ₃ : Experimental and Computational Evidence. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41988-42000.	4.0	43
46	Nanostructuring perovskite oxides: the impact of SrTiO ₃ nanocube 3D self-assembly on thermal conductivity. RSC Advances, 2016, 6, 114069-114077.	1.7	16
47	Role of Structure and Defect Chemistry in High-Performance Thermoelectric Bismuth Strontium Cobalt Oxides. Chemistry of Materials, 2016, 28, 7470-7478.	3.2	22
48	Anharmonicity in the High-Temperature <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi><mml:mi><mml:mi><td>l:m2ath>Ph</td><td>as∉47</td></mml:mi></mml:mi></mml:math>	l:m2ath>Ph	as ∉ 47
49	Ba6â^'3x Nd8+2x Ti18O54 Tungsten Bronze: A New High-Temperature n-Type Oxide Thermoelectric. Journal of Electronic Materials, 2016, 45, 1894-1899.	1.0	17
50	An experimental and computational study to resolve the composition of dolomitic lime. RSC Advances, 2016, 6, 16066-16072.	1.7	8
51	Observation of a re-entrant phase transition in the molecular complex tris(î¼ ₂ -3,5-diisopropyl-1,2,4-triazolato-î° ² <i>N</i> ¹ : <i>N</i> ² under high pressure. IUCrJ, 2016, 3, 367-376.	up 1)0 rigol	d(I)
52	Phase stability and transformations in the halide perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CsSnI</mml:mi><mml:mn>3<td>l:mın><td>ml11383ub></td></td></mml:mn></mml:msub></mml:math>	l:m ın > <td>ml11383ub></td>	ml 11383 ub>
53	Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. Journal of Chemical Physics, 2015, 143, 064710.	1.2	80
54	A Giant Reconstruction of \hat{l}_{\pm} -quartz (0001) Interpreted as Three Domains of Nano Dauphine Twins. Scientific Reports, 2015, 5, 14545.	1.6	11

#	Article	IF	CITATIONS
55	Toward Knowledgeâ€Based Grainâ€Boundary Engineering of Transparent Alumina Combining Advanced <scp>TEM</scp> and Atomistic Modeling. Journal of the American Ceramic Society, 2015, 98, 1959-1964.	1.9	9
56	Density functional theory calculations of defective UO2 at U3O7 stoichiometry. Journal of Nuclear Materials, 2015, 467, 724-729.	1.3	16
57	Atomistic investigation of the structure and transport properties of tilt grain boundaries of UO2. Journal of Nuclear Materials, 2015, 458, 45-55.	1.3	48
58	High-Temperature Thermoelectric Properties of (1Ââ^'Âx) SrTiO3Ââ^'Â(x) La1/3NbO3 Ceramic Solid Solution. Journal of Electronic Materials, 2015, 44, 1803-1808.	1.0	14
59	Modelling the effects of surfactant loading level on the sorption of organic contaminants on organoclays. RSC Advances, 2015, 5, 47022-47030.	1.7	24
60	Density functional theory investigation of the layered uranium oxides U ₃ O ₈ and U ₂ O ₅ . Dalton Transactions, 2015, 44, 2613-2622.	1.6	35
61	Energetics, thermal isomerisation and photochemistry of the linkage-isomer system [Ni(Et ₄ dien)(Î- ² -O,ON)(Î- ¹ -NO ₂)]. CrystEngComm, 2015, 17, 383-394.	1.3	16
62	Interfacial Electron-Shuttling Processes across KolliphorEL Monolayer Grafted Electrodes. ACS Applied Materials & Diterfaces, 2015, 7, 15458-15465.	4.0	10
63	Hydride ion formation in stoichiometric UO ₂ . Chemical Communications, 2015, 51, 16209-16212.	2.2	17
64	Crystal structure and thermoelectric properties of Sr–Mo substituted CaMnO ₃ : a combined experimental and computational study. Journal of Materials Chemistry C, 2015, 3, 12245-12259.	2.7	37
65	Electronic excitations in molecular solids: bridging theory and experiment. Faraday Discussions, 2015, 177, 181-202.	1.6	11
66	Tuning Thermoelectric Properties of Misfit Layered Cobaltites by Chemically Induced Strain. Journal of Physical Chemistry C, 2015, 119, 21818-21827.	1.5	33
67	Lithium migration at low concentration in TiO 2 polymorphs. Computational and Theoretical Chemistry, 2015, 1072, 43-51.	1.1	19
68	Computer simulation of defect clusters in UO2 and their dependence on composition. Journal of Nuclear Materials, 2015, 456, 329-333.	1.3	37
69	A Raman spectroscopic study of uranyl minerals from Cornwall, UK. RSC Advances, 2014, 4, 59137-59149.	1.7	33
70	Toward Modeling Clay Mineral Nanoparticles: The Edge Surfaces of Pyrophyllite and Their Interaction with Water. Journal of Physical Chemistry C, 2014, 118, 27308-27317.	1.5	48
71	Mechanical properties of mesoporous ceria nanoarchitectures. Physical Chemistry Chemical Physics, 2014, 16, 24899-24912.	1.3	3
72	Ab Initio Investigation of the UO ₃ Polymorphs: Structural Properties and Thermodynamic Stability. Inorganic Chemistry, 2014, 53, 12253-12264.	1.9	40

#	Article	IF	CITATIONS
73	The Shape of TiO ₂ -B Nanoparticles. Journal of the American Chemical Society, 2014, 136, 6306-6312.	6.6	33
74	Defect chemistry of Ti and Fe impurities and aggregates in Al2O3. Journal of Materials Chemistry A, 2014, 2, 6198-6208.	5.2	32
75	Particle shapes and surface structures of olivine NaFePO ₄ in comparison to LiFePO ₄ . Physical Chemistry Chemical Physics, 2014, 16, 21788-21794.	1.3	61
76	Surface properties of \hat{l} ±-MnO ₂ : relevance to catalytic and supercapacitor behaviour. Journal of Materials Chemistry A, 2014, 2, 15509-15518.	5.2	121
77	Structural, electronic and thermoelectric behaviour of CaMnO ₃ and CaMnO _(3â^Î) . Journal of Materials Chemistry A, 2014, 2, 14109-14117.	5.2	98
78	Rutile (\hat{I}^2 -)MnO ₂ Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance. Journal of the American Chemical Society, 2014, 136, 1418-1426.	6.6	186
79	Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Physical Review B, 2014, 89, .	1.1	212
80	DL_MONTE: a general purpose program for parallel Monte Carlo simulation. Molecular Simulation, 2013, 39, 1240-1252.	0.9	66
81	Atomistic Modeling of the Sorption Free Energy of Dioxins at Clay–Water Interfaces. Journal of Physical Chemistry C, 2013, 117, 24975-24984.	1.5	22
82	Simulation of the Adsorption and Transport of CO2 on Faujasite Surfaces. Journal of Physical Chemistry C, 2013, 117, 21778-21787.	1.5	20
83	Microscopic origin of the optical processes in blue sapphire. Chemical Communications, 2013, 49, 5259.	2.2	21
84	Monte Carlo simulation and free energies of mixed oxide nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 6219.	1.3	5
85	Nanostructuring of \hat{I}^2 -MnO ₂ : The Important Role of Surface to Bulk Ion Migration. Chemistry of Materials, 2013, 25, 536-541.	3.2	99
86	Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles. Nanoscale, 2013, 5, 6063.	2.8	71
87	Morphology and Surface Analysis of Pure and Doped Cuboidal Ceria Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 24561-24569.	1.5	31
88	Modeling the Interaction of Nanoparticles with Mineral Surfaces: Adsorbed C ₆₀ on Pyrophyllite. Journal of Physical Chemistry A, 2013, 117, 6602-6611.	1.1	15
89	Cationic Surface Reconstructions on Cerium Oxide Nanocrystals: An Aberration-Corrected HRTEM Study. ACS Nano, 2012, 6, 421-430.	7.3	53
90	Atomistic Simulation of Surface Selectivity on Carbonate Formation at Calcium and Magnesium Oxide Surfaces. Journal of Physical Chemistry C, 2012, 116, 13240-13251.	1.5	21

#	Article	lF	Citations
91	Study of surfaces and morphologies of proteic sol–gel derived barium aluminate nanopowders: An experimental and computational study. Materials Chemistry and Physics, 2012, 136, 1052-1059.	2.0	21
92	Water Adsorption and Its Effect on the Stability of Low Index Stoichiometric and Reduced Surfaces of Ceria. Journal of Physical Chemistry C, 2012, 116, 7073-7082.	1.5	204
93	Strain and Architecture-Tuned Reactivity in Ceria Nanostructures; Enhanced Catalytic Oxidation of CO to CO ₂ . Chemistry of Materials, 2012, 24, 1811-1821.	3.2	100
94	Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment. Nanoscale, 2011, 3, 1823.	2.8	42
95	Sorptive Characteristics of Organomontmorillonite toward Organic Compounds: A Combined LFERs and Molecular Dynamics Simulation Study. Environmental Science & Echnology, 2011, 45, 6504-6510.	4.6	46
96	The Structure and Dynamics of Hydrated and Hydroxylated Magnesium Oxide Nanoparticles. Langmuir, 2011, 27, 1821-1829.	1.6	36
97	Structural characterization of amorphous alumina and its polymorphs from first-principles XPS and NMR calculations. Physical Review B, $2011,83,\ldots$	1.1	90
98	Tin Monoxide: Structural Prediction from First Principles Calculations with van der Waals Corrections. Journal of Physical Chemistry C, 2011, 115, 19916-19924.	1.5	95
99	Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyI)pyridine-phosphonate–TiO2 film. Journal of Electroanalytical Chemistry, 2011, 657, 196-201.	1.9	13
100	ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Computer Physics Communications, 2010, 181, 2102-2115.	3.0	321
101	Growth modification of seeded calcite using carboxylic acids: Atomistic simulations. Journal of Colloid and Interface Science, 2010, 346, 226-231.	5.0	63
102	<scp>Group Status and Entrepreneurship</scp> . Journal of Economics and Management Strategy, 2010, 19, 919-945.	0.4	38
103	Negative compressibility in platinum sulfide using density-functional theory. Physical Review B, 2010, 81, .	1.1	31
104	Structure of Zeolite A (LTA) Surfaces and the Zeolite A/Water Interface. Journal of Physical Chemistry C, 2010, 114, 9739-9747.	1.5	43
105	Lithium Coordination Sites in Li _{<i>x</i>} TiO ₂ (B): A Structural and Computational Study. Chemistry of Materials, 2010, 22, 6426-6432.	3.2	104
106	Oxygen vacancy diffusion in alumina: New atomistic simulation methods applied to an old problem. Acta Materialia, 2009, 57, 4765-4772.	3.8	36
107	Atomistic simulation of the surface structure of electrolytic manganese dioxide. Surface Science, 2009, 603, 3184-3190.	0.8	32
108	Lithium Insertion and Transport in the TiO $<$ sub $>$ 2 $<$ /sub $>$ â $^{\circ}$ B Anode Material: A Computational Study. Chemistry of Materials, 2009, 21, 4778-4783.	3.2	169

#	Article	IF	CITATIONS
109	Atomistic Simulation of the Surface Carbonation of Calcium and Magnesium Oxide Surfaces. Journal of Physical Chemistry C, 2009, 113, 8320-8328.	1.5	30
110	Energy Minimization of Single-Walled Titanium Oxide Nanotubes. ACS Nano, 2009, 3, 3401-3412.	7.3	19
111	Atomistic modelling of adsorption and segregation at inorganic solid interfaces. Molecular Simulation, 2009, 35, 584-608.	0.9	22
112	eScience for molecular-scale simulations and the <i>e</i> Minerals project. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 967-985.	1.6	8
113	Surface and Mirror Twin Grain Boundary Segregation in Nd:YAG: An Atomistic Simulation Study. Journal of the American Ceramic Society, 2008, 91, 2698-2705.	1.9	19
114	Atomistic Simulation of Yâ€Doped αâ€Alumina Interfaces. Journal of the American Ceramic Society, 2008, 91, 3643-3651.	1.9	29
115	Free Energy Change of Aggregation of Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 14731-14736.	1.5	42
116	Low-energy surface phonons onl±-quartz (0001). Physical Review B, 2008, 78, .	1.1	8
117	Electrostatic versus polarization effects in the adsorption of aromatic molecules of varied polarity on an insulating hydrophobic surface. Journal of Physics Condensed Matter, 2008, 20, 035215.	0.7	16
118	Molecular Simulation of Mineral Surfaces and the Role of Impurities on Surface Stability. AIP Conference Proceedings, 2007, , .	0.3	2
119	Oxygen transport in unreduced, reduced and Rh(iii)-doped CeO2nanocrystals. Faraday Discussions, 2007, 134, 377-397.	1.6	24
120	Atomistic Modeling of Multilayered Ceria Nanotubes. Nano Letters, 2007, 7, 543-546.	4.5	33
121	Dopant control over the crystal morphology of ceramic materials. Surface Science, 2007, 601, 4793-4800.	0.8	26
122	Reduction of NO2on Ceria Surfaces. Journal of Physical Chemistry B, 2006, 110, 2256-2262.	1.2	117
123	Application of molecular dynamics DL_POLY codes to interfaces of inorganic materials. Molecular Simulation, 2006, 32, 1079-1093.	0.9	19
124	CeO2catalysed conversion of CO, NO2and NO from first principles energetics. Physical Chemistry Chemical Physics, 2006, 8, 216-218.	1.3	107
125	Information Delivery in Computational Mineral Science: The eMinerals Data Handling System., 2006,,.		1
126	Molecular dynamics simulations of the interaction between the surfaces of polar solids and aqueous solutions. Journal of Materials Chemistry, 2006, 16, 1997.	6.7	60

#	Article	IF	CITATIONS
127	Molecular Dynamics Simulations of Electrolyte Solutions at the (100) Goethite Surface. Journal of Physical Chemistry B, 2006, 110, 20491-20501.	1.2	54
128	Surface Structure of (101 \hat{i} ,0) and (112 \hat{i} ,0) Surfaces of ZnO with Density Functional Theory and Atomistic Simulation. Journal of Physical Chemistry B, 2006, 110, 7985-7991.	1.2	71
129	Ionic conductivity in nano-scale CeO2/YSZ heterolayers. Journal of Materials Chemistry, 2006, 16, 1067.	6.7	45
130	Atomistic Modeling Study of Surface Segregation in Nd:YAG. Journal of the American Ceramic Society, 2006, 89, 3812-3816.	1.9	28
131	Atomistic simulation of the free energies of dissolution of ions from flat and stepped calcite surfaces. Journal of Crystal Growth, 2006, 294, 103-110.	0.7	60
132	Vibrational properties of CO on ceria surfaces. Surface Science, 2006, 600, 175-178.	0.8	46
133	Atomistic simulation studies of magnetite surface structures and adsorption behavior in the presence of molecular and dissociated water and formic acid. Journal of Colloid and Interface Science, 2006, 295, 364-373.	5.0	30
134	Computer Modelling of Oxygen Mobility at Ceria Surfaces and the Construction of Ceria Nanotube Models. Advances in Science and Technology, 2006, 46, 48.	0.2	0
135	Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surface Science, 2005, 576, 217-229.	0.8	683
136	The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surface Science, 2005, 595, 223-232.	0.8	690
137	Crystal morphology and surface structures of orthorhombic MgSiO3 perovskite. Physics and Chemistry of Minerals, 2005, 31, 671-682.	0.3	17
138	Crystal morphology and surface structures of orthorhombic MgSiO3 in the presence of divalent impurity ions. Physics and Chemistry of Minerals, 2005, 32, 379-387.	0.3	6
139	TheeMinerals collaboratory: tools and experience. Molecular Simulation, 2005, 31, 329-337.	0.9	4
140	Atomistic simulation of charged iron oxyhydroxide surfaces in contact with aqueous solution. Chemical Communications, 2005, , 3027.	2.2	33
141	Oxidising CO to CO2 using ceria nanoparticles. Physical Chemistry Chemical Physics, 2005, 7, 2936.	1.3	159
142	Competitive Adsorption on Wollastonite:Â An Atomistic Simulation Approach. Journal of Physical Chemistry B, 2005, 109, 11286-11295.	1.2	17
143	Computer aided design of nano-structured materials with tailored ionic conductivities. Physical Chemistry Chemical Physics, 2005, 7, 16.	1.3	22
144	Self diffusion of argon in flexible, single wall, carbon nanotubes. Molecular Simulation, 2005, 31, 385-389.	0.9	11

#	Article	IF	CITATIONS
145	Molecular dynamics simulations of the interactions between water and inorganic solids. Journal of Materials Chemistry, 2005, 15, 1454.	6.7	95
146	Ab Initio Surface Phase Diagram of the {101Ì,,4} Calcite Surface. Journal of Physical Chemistry B, 2005, 109, 18211-18213.	1.2	34
147	Electronic structure of the antiferromagneticB1-structured FeO. Physical Review B, 2004, 70, .	1.1	57
148	High-temperature structure and dynamics of coesite (SiO2) from numerical simulations. Physics and Chemistry of Minerals, 2004, 31, 569-579.	0.3	16
149	Atomistic simulation of the structure and segregation to the (0001) and surfaces of Fe2O3. Physics and Chemistry of Minerals, 2004, 31, 507-517.	0.3	24
150	Modelling Inorganic Solids and Their Interfaces: A Combined Approach of Atomistic and Electronic Structure Simulation Techniques. ChemInform, 2004, 35, no.	0.1	1
151	Free energy of adsorption of water and calcium on the {10 1? 4} calcite surfaceElectronic supplementary information (ESI) available: free energy calculations. See http://www.rsc.org/suppdata/cc/b3/b311928a/. Chemical Communications, 2004, , 52.	2.2	67
152	Ab initiomorphology and surface thermodynamics ofl±â^Al2O3. Physical Review B, 2004, 69, .	1.1	117
153	From HADES to PARADISEâ€"atomistic simulation of defects in minerals. Journal of Physics Condensed Matter, 2004, 16, S2735-S2749.	0.7	9
154	Free Energy of Adsorption of Water and Metal lons on the $\{101\tilde{l},4\}$ Calcite Surface. Journal of the American Chemical Society, 2004, 126, 10152-10161.	6.6	276
155	Shape of CeO2 nanoparticles using simulated amorphisation and recrystallisation. Chemical Communications, 2004, , 2438.	2.2	84
156	Atomistic simulation of the surface structure of wollastonite. Chemical Physics Letters, 2003, 377, 81-92.	1.2	20
157	Atomistic simulation of the surface structure of wollastonite and adsorption phenomena relevant to flotation. International Journal of Mineral Processing, 2003, 72, 111-127.	2.6	22
158	Modelling inorganic solids and their interfaces: A combined approach of atomistic and electronic structure simulation techniques. Faraday Discussions, 2003, 124, 155.	1.6	29
159	Atomistic Simulation of the Dissociative Adsorption of Water on Calcite Surfaces. Journal of Physical Chemistry B, 2003, 107, 7676-7682.	1.2	141
160	Synthesis, structure and ionic conductivity in nanopolycrystalline BaF2/CaF2 heterolayersElectronic supplementary information (ESI) available: potential parameters and pertinent calculated physical properties for the perfect BaF2 and CaF2. See http://www.rsc.org/suppdata/cc/b3/b305393h/. Chemical Communications, 2003, , 1804.	2.2	15
161	Metal oxide encapsulated nanoparticles. Journal of Materials Chemistry, 2003, 13, 2078.	6.7	5
162	Calculating the vibrational thermodynamic properties of bulk oxides using lattice dynamics and molecular dynamics. Physical Review B, 2003, 67, .	1,1	14

#	Article	IF	Citations
163	Encapsulated Oxide Nanoparticles:Â The Influence of the Microstructure on Associated Impurities within a Material. Journal of the American Chemical Society, 2003, 125, 8581-8588.	6.6	14
164	Molecular dynamics simulations of the incorporation of Mg 2+, Cd 2+ and Sr 2+ at calcite growth steps: Introduction of a SrCO 3 potential model. Molecular Simulation, 2002, 28, 573-589.	0.9	12
165	Modelling the effect of water on cation exchange in zeolite A. Journal of Materials Chemistry, 2002, 12, 124-131.	6.7	84
166	Atomistic simulation of crystal growth at the aã€^100〉 screw dislocation terminating at the {100} surface of MgO. Surface Science, 2001, 474, L185-L190.	0.8	18
167	Surface–water interactions in the dolomite problem. Physical Chemistry Chemical Physics, 2001, 3, 3217-3221.	1.3	79
168	Atomistic Modeling of Gibbsite:Â Cation Incorporation. Journal of Physical Chemistry B, 2001, 105, 5099-5105.	1.2	19
169	Density functional theory calculations of proton-containing defects in forsterite. Radiation Effects and Defects in Solids, 2001, 154, 255-259.	0.4	3
170	3. Application of Lattice Dynamics and Molecular Dynamics Techniques to Minerals and Their Surfaces. , 2001, , 63-82.		6
171	Modeling Dynamic Properties of Mineral Surfaces. ACS Symposium Series, 2001, , 97-112.	0.5	2
172	Structure and stability of iron oxide surfaces and their reactivity with water. Radiation Effects and Defects in Solids, 2001, 156, 75-79.	0.4	1
173	Application of Lattice Dynamics and Molecular Dynamics Techniques to Minerals and Their Surfaces. Reviews in Mineralogy and Geochemistry, 2001, 42, 63-82.	2.2	5
174	Atomistic Simulation of the Surface Energy and Structure of the Clean and Hydrated Surfaces of Spinel MgAl ₂ O ₄ . Key Engineering Materials, 2001, 206-213, 543-546.	0.4	3
175	Atomistic simulation studies on the effect of pressure on diffusion at the MgO 410/[001] tilt grain boundary. Physical Review B, 2001, 64, .	1.1	13
176	Computer Simulation of Dissociative Adsorption of Water on the Surfaces of Spinel MgAl ₂ O ₄ . Journal of the American Ceramic Society, 2001, 84, 1553-1558.	1.9	17
177	Proton-containing defects at forsterite {010} tilt grain boundaries and stepped surfaces. American Mineralogist, 2000, 85, 1143-1154.	0.9	43
178	Modelling the effect of water on the surface structure and stability of forsterite. Physics and Chemistry of Minerals, 2000, 27, 332-341.	0.3	110
179	The MD simulation of the equation of state of MgO: Application as a pressure calibration standard at high temperature and high pressure. American Mineralogist, 2000, 85, 312-316.	0.9	124
180	Atomistic simulation of the effect of temperature and pressure on point defect formation in MgSiO3perovskite and the stability of CaSiO3perovskite. Journal of Physics Condensed Matter, 2000, 12, 8427-8438.	0.7	15

#	Article	IF	CITATIONS
181	Atomistic Simulation of Mineral Surfaces. Molecular Simulation, 2000, 24, 71-86.	0.9	14
182	Modeling the Surface Structure and Reactivity of Pyrite:Â Introducing a Potential Model for FeS2. Journal of Physical Chemistry B, 2000, 104, 7969-7976.	1.2	72
183	Modeling absorption and segregation of magnesium and cadmium ions to calcite surfaces: Introducing MgCO3 and CdCO3 potential models. Journal of Chemical Physics, 2000, 112, 4326-4333.	1.2	55
184	Atomistic simulation methodologies for modelling the nucleation, growth and structure of interfaces. Journal of Materials Chemistry, 2000, 10, 1315-1324.	6.7	24
185	Atomistic Simulation of the Surface Energy of Spinel MgAl ₂ O ₄ . Journal of the American Ceramic Society, 2000, 83, 2082-2084.	1.9	101
186	Computer simulation of pressure-induced structural transitions in MgO [001] tilt grain boundaries. American Mineralogist, 1999, 84, 138-143.	0.9	13
187	Comparison of atomistic simulations and pseudopotential calculations of the MgO $\{100\}$ /Ag $\{100\}$ and MgO $\{110\}$ /Ag $\{110\}$ interfaces. Journal of Chemical Physics, 1999, 110, 8090-8097.	1.2	29
188	Computer simulation of general grain boundaries in rocksalt oxides. Physical Review B, 1999, 60, 2740-2746.	1.1	25
189	Simulations of surfaces and interfaces in MgO. Radiation Effects and Defects in Solids, 1999, 151, 299-304.	0.4	3
190	Computer simulation of dissociative adsorption of water on CaO and MgO surfaces and the relation to dissolution. Research on Chemical Intermediates, 1999, 25, 195-211.	1.3	14
191	Atomistic simulation of screw dislocations in rock salt structured materials. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 527-536.	0.7	31
192	Atomistic simulation of the effect of impurities on vacancy migration at the $\{4\ 1\ 0\}/[0\ 0\ 1]$ tilt grain boundary of MgO. Physics and Chemistry of Minerals, 1999, 27, 133-137.	0.3	6
193	Molecular dynamics simulation of crystal dissolution from calcite steps. Physical Review B, 1999, 60, 13792-13799.	1.1	93
194	Atomistic simulation of oxide surfaces and their reactivity with water. Faraday Discussions, 1999, 114, 381-393.	1.6	62
195	Modeling the Surface Structure and Stability of α-Quartz. Journal of Physical Chemistry B, 1999, 103, 1270-1277.	1.2	211
196	Ab initiocalculation of the origin of the distortion of \hat{l}_{\pm} -PbO. Physical Review B, 1999, 59, 8481-8486.	1.1	160
197	Atomistic simulation of oxide dislocations and interfaces. Radiation Effects and Defects in Solids, 1999, 151, 185-195.	0.4	7
198	Origin of the Lone Pair of \hat{l} ±-PbO from Density Functional Theory Calculations. Journal of Physical Chemistry B, 1999, 103, 1258-1262.	1.2	157

#	Article	IF	CITATIONS
199	Effect of Chemisorption and Physisorption of Water on the Surface Structure and Stability of alphaâ€Alumina. Journal of the American Ceramic Society, 1999, 82, 3209-2316.	1.9	63
200	Atomistic Simulation of Mineral Surfaces and Interfaces. , 1999, , 629-653.		2
201	Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water. Physical Review B, 1998, 58, 13901-13908.	1.1	189
202	Atomistic simulation of the effects of calcium and strontium defects on the surface structure and stability of BaSO4. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1947-1952.	1.7	30
203	Modeling the Competitive Adsorption of Water and Methanoic Acid on Calcite and Fluorite Surfaces. Langmuir, 1998, 14, 5900-5906.	1.6	91
204	Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite:Â An Atomistic Approach. Journal of Physical Chemistry B, 1998, 102, 2914-2922.	1.2	492
205	Simulation of the structure and stability of sphalerite (ZnS) surfaces. American Mineralogist, 1998, 83, 141-146.	0.9	69
206	Computer modelling of metal - oxide interfaces. Journal of Physics Condensed Matter, 1997, 9, 5709-5717.	0.7	33
207	Vacancy migration at the $\{410\}/[001]$ symmetric tilt grain boundary of MgO: An atomistic simulation study. Physical Review B, 1997, 56, 11477-11484.	1.1	43
208	Computer Simulation of Interfaces in Ceramics. Materials Research Society Symposia Proceedings, 1997, 492, 85.	0.1	1
209	Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 467-475.	1.7	193
210	Atomistic simulation of mineral surfaces: Studies of surface stability and growth. Phase Transitions, 1997, 61, 83-107.	0.6	30
211	Effect of Lattice Relaxation on Cation Exchange in Zeolite A Using Computer Simulation. Journal of Physical Chemistry B, 1997, 101, 9964-9972.	1.2	18
212	Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. Journal of Materials Chemistry, 1997, 7, 563-568.	6.7	294
213	Computer simulation of the structure and stability of forsterite surfaces. Physics and Chemistry of Minerals, 1997, 25, 70-78.	0.3	74
214	Free-energy calculations of thermodynamic, vibrational, elastic, and structural properties of \hat{l}_{\pm} -quartz at variable pressures and temperatures. Physical Review B, 1996, 54, 826-835.	1.1	38
215	Atomistic simulation of dislocations, surfaces and interfaces in MgO. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 433.	1.7	453
216	Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3. Physics and Chemistry of Minerals, 1996, 23, 89.	0.3	166

#	Article	IF	CITATIONS
217	Computer simulation of the surface structures of WO3. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2049.	1.7	65
218	Atomistic simulation of adsorption of water on three-, four- and five-coordinated surface sites of magnesium oxide. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2081.	1.7	58
219	Lattice-dynamical study of the structure and elasticity of dodecasil-3Cat elevated temperatures. Physical Review B, 1996, 53, 14073-14079.	1.1	1
220	Atomistic simulation of hydroxide ions in inorganic solids. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 49-58.	0.6	72
221	Atomistic simulation of the effect of temperature and pressure on the [001] symmetric tilt grain boundaries of MgO. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 74, 407-418.	0.7	33
222	Molecular-dynamics simulations of nickel oxide surfaces. Physical Review B, 1995, 52, 5323-5329.	1.1	86
223	Dynamical instabilities in \hat{l} ±-quartz and \hat{l} ±-berlinite: A mechanism for amorphization. Physical Review B, 1995, 52, 13306-13309.	1.1	35
224	Computer simulation of the oxygen mobility in CaMnO _{3-x} . Phase Transitions, 1995, 55, 229-244.	0.6	6
225	Protons in oxides. Radiation Effects and Defects in Solids, 1995, 134, 57-64.	0.4	4
226	Quartz amorphization: A dynamical instability. Philosophical Magazine Letters, 1995, 71, 59-64.	0.5	21
227	Thermal Expansion Behavior of Zeolites and AlPO4s. The Journal of Physical Chemistry, 1995, 99, 10609-10615.	2.9	94
228	Atomistic Simulation of the Effect of Dissociative Adsorption of Water on the Surface Structure and Stability of Calcium and Magnesium Oxide. The Journal of Physical Chemistry, 1995, 99, 17219-17225.	2.9	152
229	Effect of defects on the stability of heteroepitaxial ceramic interfaces studied by computer simulation. Physical Review B, 1994, 50, 14498-14505.	1.1	19
230	Surface Structures and Oxygen Hole Formation on the La2O3 Catalyst. A Computer Simulation Study. The Journal of Physical Chemistry, 1994, 98, 9637-9641.	2.9	43
231	Surface Segregation of Metal lons in Cerium Dioxide. The Journal of Physical Chemistry, 1994, 98, 13625-13630.	2.9	68
232	Atomistic simulation of the surface structure of spinel. Journal of Materials Chemistry, 1994, 4, 813.	6.7	81
233	Accommodation of the misfit strain energy in the $BaO(100)/MgO(100)$ heteroepitaxial ceramic interface using computer simulation techniques. Journal of Materials Chemistry, 1994, 4, 1883.	6.7	12
234	A Study of Thin Film YBa ₂ Cu ₃ O _{6.5} /MgO Interfaces Using a Near Coincidence Site Lattice Theory with Atomistic Simulation. Molecular Simulation, 1994, 12, 127-139.	0.9	8

#	Article	IF	CITATIONS
235	Calculated defect formation energies as a function of distance from the BaO/MgO interface compared with image theory predictions. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1994, 69, 787-792.	0.7	7
236	Computer modelling of inorganic solids and surfaces. Faraday Discussions, 1993, 95, 75.	1.6	60
237	Computer simulation of the crystal morphology of NiO. Modelling and Simulation in Materials Science and Engineering, 1993, 1, 755-760.	0.8	70
238	Computer simulation of thin film heteroepitaxial ceramic interfaces using a near-coincidence-site lattice theory. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 68, 565-573.	0.7	61
239	Experimental verification of a predicted negative thermal expansivity of crystalline zeolites. Journal of Physics Condensed Matter, 1993, 5, L329-L332.	0.7	57
240	Computer Simulation of Surface Segregation. Molecular Simulation, 1992, 9, 83-98.	0.9	27
241	Elastic and nonlinear acoustic properties of the terbium iron garnetTb3Fe5O12in relation to those of other garnets. Physical Review B, 1992, 46, 8756-8767.	1.1	22
242	Computer Modelling of Elastic Properties of LaF ₃ Using Free Energy Minimisation Techniques. Molecular Simulation, 1992, 8, 345-350.	0.9	1
243	Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide. Journal of the Chemical Society Chemical Communications, 1992, , 977.	2.0	107
244	Molecular dynamics simulation of fluoride-perovskites. Journal of Physics Condensed Matter, 1992, 4, 2097-2108.	0.7	25
245	Temperature dependence of the acoustic-mode vibrational anharmonicity of quartz from 243 to 393 K. Physical Review B, 1992, 45, 10242-10254.	1.1	11
246	Information on catalyst surface structure from crystallite morphologies observed by scanning electron microscopy (SEM). Catalysis Letters, 1992, 15, 123-131.	1.4	16
247	Recent Advances in Computational Studies of Zeolites. Topics in Inclusion Science, 1992, , 137-185.	0.5	2
248	Predicting the influence of growth additives on the morphology of ionic crystals. Journal of the Chemical Society Chemical Communications, 1991, , 1494.	2.0	42
249	Calculations of the radial seismic velocity/density ratio for MgO and MgSiO ₃ â€perovskite at high pressure. Geophysical Research Letters, 1991, 18, 2185-2188.	1.5	1
250	The effect of pressure on Schottky pair formation in MgO: A lattice dynamical approach. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 64, 1133-1144.	0.7	13
251	Simulation studies of the structure and energetics of sorbed molecules in high-silica zeolites. 1. Hydrocarbons. The Journal of Physical Chemistry, 1991, 95, 4038-4044.	2.9	107
252	Some Observations on the Role of Dopants in Phase Transitions in Zirconia from Atomistic Simulations. Journal of the American Ceramic Society, 1990, 73, 3220-3224.	1.9	20

#	Article	IF	CITATIONS
253	Computer Modelling of the Structure and Thermodynamic Properties of Silicate Minerals. , 1990 , , $405-429$.		2
254	Alkaline Earth Impurity Segregation at the Basal $\{0001\}$ and Prism $\{10 < ovl > 1 < /ovl > 0\}$ Surfaces of \hat{l}_{\pm} -Al $<$ sub $> 2 < /sub> 0 < sub> 3 < /sub>$. Molecular Simulation, 1989, 4, 175-185.	0.9	8
255	Calculated surface properties of La2CuO4: implications for high-Tcbehavior. Journal of Physics Condensed Matter, 1989, 1, SB119-SB122.	0.7	3
256	Industrial Applications of Simulation Studies in Solid State Chemistry. Molecular Simulation, 1989, 3, 49-69.	0.9	21
257	Impurity segregation to the surfaces of corundum-structured oxides. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 555.	1.1	37
258	Temperature dependence of the static dielectric constant of naturally occurring monocrystalline forsterite. Journal of Materials Science Letters, 1988, 7, 415-416.	0.5	5
259	The Computer Simulation of the Lattice Dynamics of Silicates. , 1988, , 591-618.		11
260	The lattice dynamics of forsterite. Mineralogical Magazine, 1987, 51, 157-170.	0.6	83
261	The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Physics and Chemistry of Minerals, 1987, 15, 181-190.	0.3	125
262	A computer simulation of the structure and elastic properties of MgSiO3 perovskite. Mineralogical Magazine, 1986, 50, 693-707.	0.6	28
263	The energetics of polytypic structures: a computer simulation of magnesium silicate spinelloids. Acta Crystallographica Section B: Structural Science, 1985, 41, 231-239.	1.8	26
264	Structure prediction of silicate minerals using energy-minimization techniques. Acta Crystallographica Section B: Structural Science, 1984, 40, 200-208.	1.8	49
265	Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4. Physics and Chemistry of Minerals, 1984, 10, 209-216.	0.3	114
266	Computer simulations of the structural and physical properties of the polymorphs of Mg2SiO4. Acta Crystallographica Section A: Foundations and Advances, 1984, 40, C254-C254.	0.3	0
267	Prediction of mineral structure by energy minimisation techniques. Journal of the Chemical Society Chemical Communications, 1983, , 936.	2.0	4
268	Simulating silicate structures and the structural chemistry of pyroxenoids. Nature, 1982, 295, 658-662.	13.7	67
269	Simulating silicate structures and structural chemistry of pyroxenoids (reply). Nature, 1982, 300, 199-199.	13.7	3
270	Atomic Structure of Low-Index CeO2 Surfaces. , 0, , 237-240.		0

#	Article	IF	CITATIONS
271	Atomistic simulation of screw dislocations in rock salt structured materials. , 0, .		1
272	Investigating Surface Properties and Lithium Diffusion in Brookite-TiO2. Journal of the Brazilian Chemical Society, $0, , .$	0.6	2