David T Curiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9001462/publications.pdf

Version: 2024-02-01

217 papers 11,180 citations

56 h-index 98 g-index

223 all docs 223
docs citations

times ranked

223

7411 citing authors

#	Article	IF	Citations
1	Efficient Genome Editing Achieved via Plug-and-Play Adenovirus Piggyback Transport of Cas9/gRNA Complex on Viral Capsid Surface. ACS Nano, 2022, 16, 10443-10455.	14.6	6
2	Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Therapy, 2021, 28, 375-389.	4.6	8
3	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
4	A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Reports Medicine, 2021, 2, 100230.	6.5	99
5	Advanced genetic engineering to achieve in vivo targeting of adenovirus utilizing camelid single domain antibody. Journal of Controlled Release, 2021, 334, 106-113.	9.9	3
6	Mucopolysaccharidoses type I gene therapy. Journal of Inherited Metabolic Disease, 2021, 44, 1088-1098.	3.6	6
7	An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Reports, 2021, 36, 109452.	6.4	90
8	Vector Strategies to Actualize B Cell–Based Gene Therapies. Journal of Immunology, 2021, 207, 755-764.	0.8	5
9	The era of gene therapy: From preclinical development to clinical application. Drug Discovery Today, 2021, 26, 1602-1619.	6.4	26
10	Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. Npj Vaccines, 2021, 6, 97.	6.0	175
11	Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies. ACS Nano, 2021, 15, 13970-13979.	14.6	7
12	Multiple Treatment Cycles of Neural Stem Cell Delivered Oncolytic Adenovirus for the Treatment of Glioblastoma. Cancers, 2021, 13, 6320.	3.7	5
13	Targeting Tumor Neoangiogenesis via Targeted Adenoviral Vector to Achieve Effective Cancer Gene Therapy for Disseminated Neoplastic Disease. Molecular Cancer Therapeutics, 2020, 19, 966-971.	4.1	6
14	A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell, 2020, 183, 169-184.e13.	28.9	446
15	Advances in Alpha-1 Antitrypsin Gene Therapy. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 560-570.	2.9	15
16	Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. Journal of Controlled Release, 2020, 327, 788-800.	9.9	26
17	A New Gorilla Adenoviral Vector with Natural Lung Tropism Avoids Liver Toxicity and Is Amenable to Capsid Engineering and Vector Retargeting. Journal of Virology, 2020, 94, .	3.4	8

#	Article	IF	Citations
19	Defining a murine ovarian cancer model for the evaluation of conditionally-replicative adenovirus (CRAd) virotherapy agents. Journal of Ovarian Research, 2019, 12, 18.	3.0	7
20	Enhanced Delivery of Oncolytic Adenovirus by Neural Stem Cells for Treatment of Metastatic Ovarian Cancer. Molecular Therapy - Oncolytics, 2019, 12, 79-92.	4.4	36
21	Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. Journal of Controlled Release, 2019, 298, 128-141.	9.9	59
22	Vaccine-Induced Skewing of T Cell Responses Protects Against Chikungunya Virus Disease. Frontiers in Immunology, 2019, 10, 2563.	4.8	11
23	Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Therapy, 2018, 25, 139-156.	4.5	44
24	Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene Therapy, 2018, 25, 27-38.	4.6	27
25	Capsid-Incorporation Strategy To Display Antigens for an Alternative Adenoviral Vector Vaccine Approach. Molecular Pharmaceutics, 2018, 15, 5446-5453.	4.6	3
26	Improved Induction of Anti-Melanoma T Cells by Adenovirus-5/3 Fiber Modification to Target Human DCs. Vaccines, 2018, 6, 42.	4.4	8
27	COX2/mPGES1/PGE ₂ pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1117-1122.	7.1	378
28	A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice. Vaccine, 2017, 35, 3239-3248.	3.8	8
29	Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs. Clinical and Translational Medicine, 2017, 6, 11.	4.0	10
30	Adenovirus platform enhances transduction efficiency of human mesenchymal stem cells: An opportunity for cellular carriers of targeted TRAIL-based TR3 biologics in ovarian cancer. PLoS ONE, 2017, 12, e0190125.	2.5	14
31	A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget, 2017, 8, 12272-12289.	1.8	9
32	CXCL12 retargeting of an adenovirus vector to cancer cells using a bispecific adapter. Oncolytic Virotherapy, 2016, Volume 5, 99-113.	6.0	12
33	Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels. Journal of Gene Medicine, 2016, 18, 38-44.	2.8	6
34	A Recombinant Chimeric Ad5/3 Vector Expressing a Multistage <i>Plasmodium</i> Antigen Induces Protective Immunity in Mice Using Heterologous Prime-Boost Immunization Regimens. Journal of Immunology, 2016, 197, 2748-2761.	0.8	13
35	Combinatorial strategies based on CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis treatment for ovarian cancer. Journal of Ovarian Research, 2016, 9, 38.	3.0	14
36	A Tetraspecific VHH-Based Neutralizing Antibody Modifies Disease Outcome in Three Animal Models of Clostridium difficile Infection. Vaccine Journal, 2016, 23, 774-784.	3.1	37

#	Article	IF	CITATIONS
37	Membrane-proximal TRAIL species are incapable of inducing short circuit apoptosis signaling: Implications for drug development and basic cytokine biology. Scientific Reports, 2016, 6, 22661.	3.3	6
38	Enhancing Adenoviral-Mediated Gene Transfer and Expression to Endometrial Cells. Reproductive Sciences, 2016, 23, 1109-1115.	2.5	0
39	Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma. Reproductive Sciences, 2016, 23, 464-474.	2.5	12
40	Adenoviral Expression of a Bispecific VHH-Based Neutralizing Agent That Targets Protective Antigen Provides Prophylactic Protection from Anthrax in Mice. Vaccine Journal, 2016, 23, 213-218.	3.1	15
41	A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine. PLoS ONE, 2016, 11, e0154819.	2.5	11
42	Retargeted oncolytic adenovirus displaying a single variable domain of camelid heavy-chain-only antibody in a fiber protein. Molecular Therapy - Oncolytics, 2015, 2, 15001.	4.4	17
43	Incorporation of Porcine Adenovirus 4 Fiber Protein Enhances Infectivity of Adenovirus Vector on Dendritic Cells: Implications for Immune-Mediated Cancer Therapy. PLoS ONE, 2015, 10, e0125851.	2.5	7
44	A Multi Targeting Conditionally Replicating Adenovirus Displays Enhanced Oncolysis while Maintaining Expression of Immunotherapeutic Agents. PLoS ONE, 2015, 10, e0145272.	2.5	9
45	A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma. Human Gene Therapy, 2015, 26, 635-646.	2.7	11
46	The N-Terminal Domain of SIRT1 Is a Positive Regulator of Endogenous SIRT1-Dependent Deacetylation and Transcriptional Outputs. Cell Reports, 2015, 10, 1665-1673.	6.4	56
47	A Novel <i>CDC25B</i> Promoter–Based Oncolytic Adenovirus Inhibited Growth of Orthotopic Human Pancreatic Tumors in Different Preclinical Models. Clinical Cancer Research, 2015, 21, 1665-1674.	7.0	10
48	Adenovirus Vector Expressing Stx1/Stx2-Neutralizing Agent Protects Piglets Infected with Escherichia coli O157:H7 against Fatal Systemic Intoxication. Infection and Immunity, 2015, 83, 286-291.	2.2	22
49	Prolonged Prophylactic Protection from Botulism with a Single Adenovirus Treatment Promoting Serum Expression of a VHH-Based Antitoxin Protein. PLoS ONE, 2014, 9, e106422.	2.5	30
50	The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting. Laboratory Investigation, 2014, 94, 881-892.	3.7	17
51	Monitoring of Biodistribution and Persistence of Conditionally Replicative Adenovirus in a Murine Model of Ovarian Cancer Using Capsid-Incorporated mCherry and Expression of Human Somatostatin Receptor Subtype 2 Gene. Molecular Imaging, 2014, 13, 7290.2014.00024.	1.4	6
52	Fiber-Modified Adenovirus for Central Nervous System Parkinson's Disease Gene Therapy. Viruses, 2014, 6, 3293-3310.	3.3	13
53	Analysis of purified Wild type and mutant adenovirus particles by SILAC based quantitative proteomics. Journal of General Virology, 2014, 95, 2504-2511.	2.9	13
54	Adenoviral targeting using genetically incorporated camelid single variable domains. Laboratory Investigation, 2014, 94, 893-905.	3.7	16

#	Article	IF	CITATIONS
55	Characterization of the canine mda-7 gene, transcripts and expression patterns. Gene, 2014, 547, 23-33.	2.2	2
56	Construction and Radiolabeling of Adenovirus Variants that Incorporate Human Metallothionein into Protein IX for Analysis of Biodistribution. Molecular Imaging, 2014, 13, 7290.2014.00022.	1.4	5
57	Species D Human Adenovirus Type 9 Exhibits Better Virus-Spread Ability for Antitumor Efficacy among Alternative Serotypes. PLoS ONE, 2014, 9, e87342.	2.5	12
58	Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3- <i>CTV</i>). Journal of Cellular Physiology, 2013, 229, n/a-n/a.	4.1	21
59	Retargeting of gene expression using endothelium specific hexon modified adenoviral vector. Virology, 2013, 447, 312-325.	2.4	20
60	A phase I clinical trial of Ad5/3-Δ24, a novel serotype-chimeric, infectivity-enhanced, conditionally-replicative adenovirus (CRAd), in patients with recurrent ovarian cancer. Gynecologic Oncology, 2013, 130, 518-524.	1.4	68
61	Therapeutic Improvement of a Stroma-Targeted CRAd by Incorporating Motives Responsive to the Melanoma Microenvironment. Journal of Investigative Dermatology, 2013, 133, 2576-2584.	0.7	15
62	An Adenovirus Vector Incorporating Carbohydrate Binding Domains Utilizes Glycans for Gene Transfer. PLoS ONE, 2013, 8, e55533.	2.5	23
63	Transcriptional Targeting of Primary and Metastatic Tumor Neovasculature by an Adenoviral Type 5 Roundabout4 Vector in Mice. PLoS ONE, 2013, 8, e83933.	2.5	7
64	A Phase I Clinical Trial of Ad5.SSTR/TK.RGD, a Novel Infectivity-Enhanced Bicistronic Adenovirus, in Patients with Recurrent Gynecologic Cancer. Clinical Cancer Research, 2012, 18, 3440-3451.	7.0	51
65	Adenoviral protein V promotes a process of viral assembly through nucleophosmin 1. Virology, 2012, 432, 283-295.	2.4	26
66	A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice. Molecular Therapy, 2012, 20, 2222-2233.	8.2	20
67	Adenovirus Strategies for Tissue-Specific Targeting. Advances in Cancer Research, 2012, 115, 39-67.	5.0	62
68	Derivation of a Myeloid Cell-Binding Adenovirus for Gene Therapy of Inflammation. PLoS ONE, 2012, 7, e37812.	2.5	14
69	Dendritic Cell Based PSMA Immunotherapy for Prostate Cancer Using a CD40-Targeted Adenovirus Vector. PLoS ONE, 2012, 7, e46981.	2.5	28
70	CD40â€ŧargeted adenoviral cancer vaccines: the long and winding road to the clinic. Journal of Gene Medicine, 2012, 14, 416-427.	2.8	22
71	Enhanced delivery of <i>mdaâ€</i> 7/ILâ€24 using a serotype chimeric adenovirus (Ad.5/3) in combination with the apogossypol derivative Blâ€97C1 (Sabutoclax) improves therapeutic efficacy in low CAR colorectal cancer cells. Journal of Cellular Physiology, 2012, 227, 2145-2153.	4.1	43
72	A New Generation of Serotype Chimeric Infectivity-Enhanced Conditionally Replicative Adenovirals: The Safety Profile of Ad5/3-1"24 in Advance of a Phase I Clinical Trial in Ovarian Cancer Patients. Human Gene Therapy, 2011, 22, 821-828.	2.7	19

#	Article	IF	CITATIONS
73	Treatment of chemotherapy resistant ovarian cancer with a MDR1 targeted oncolytic adenovirus. Gynecologic Oncology, 2011, 123, 138-146.	1.4	14
74	Potent Antitumor Immunity Generated by a CD40-Targeted Adenoviral Vaccine. Cancer Research, 2011, 71, 5827-5837.	0.9	31
75	Selective Transduction of Dendritic Cells in Human Lymph Nodes and Superior Induction of High-avidity Melanoma-reactive Cytotoxic T Cells by a CD40-targeted Adenovirus. Journal of Immunotherapy, 2010, 33, 706-715.	2.4	26
76	An adenoviral vector expressing human adenovirus 5 and 3 fiber proteins for targeting heterogeneous cell populations. Virology, 2010, 407, 196-205.	2.4	14
77	Chimeric adenoviral vectors incorporating a fiber of human adenovirus 3 efficiently mediate gene transfer into prostate cancer cells. Prostate, 2010, 70, 362-376.	2.3	22
78	Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy. PLoS ONE, 2010, 5, e12672.	2.5	17
79	Substitution of Adenovirus Serotype 3 Hexon onto a Serotype 5 Oncolytic Adenovirus Reduces Factor X Binding, Decreases Liver Tropism, and Improves Antitumor Efficacy. Molecular Cancer Therapeutics, 2010, 9, 2536-2544.	4.1	48
80	A Phase I Study of a Tropism-Modified Conditionally Replicative Adenovirus for Recurrent Malignant Gynecologic Diseases. Clinical Cancer Research, 2010, 16, 5277-5287.	7.0	93
81	Crystallographic Structure of Porcine Adenovirus Type 4 Fiber Head and Galectin Domains. Journal of Virology, 2010, 84, 10558-10568.	3.4	19
82	Cisplatin Enhances Protein Kinase R-Like Endoplasmic Reticulum Kinase- and CD95-Dependent Melanoma Differentiation-Associated Gene-7/Interleukin-24–Induced Killing in Ovarian Carcinoma Cells. Molecular Pharmacology, 2010, 77, 298-310.	2.3	33
83	Eradication of Therapy-resistant Human Prostate Tumors Using an Ultrasound-guided Site-specific Cancer Terminator Virus Delivery Approach. Molecular Therapy, 2010, 18, 295-306.	8.2	67
84	In Vitro Dynamic Visualization Analysis of Fluorescently Labeled Minor Capsid Protein IX and Core Protein V by Simultaneous Detection. Journal of Molecular Biology, 2010, 395, 55-78.	4.2	16
85	Identifying the Safety Profile of Ad5.SSTR/TK.RGD, a Novel Infectivity-Enhanced Bicistronic Adenovirus, in Anticipation of a Phase I Clinical Trial in Patients with Recurrent Ovarian Cancer. Clinical Cancer Research, 2009, 15, 4131-4137.	7.0	20
86	Combined Transductional Untargeting/Retargeting and Transcriptional Restriction Enhances Adenovirus Gene Targeting and Therapy for Hepatic Colorectal Cancer Tumors. Cancer Research, 2009, 69, 554-564.	0.9	29
87	Advancements in adenoviral based virotherapy for ovarian cancer. Advanced Drug Delivery Reviews, 2009, 61, 836-841.	13.7	25
88	A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine, 2009, 27, 7116-7124.	3.8	44
89	Selective Transduction of Mature DC in Human Skin and Lymph Nodes by CD80/CD86-targeted Fiber-modified Adenovirus-5/3. Journal of Immunotherapy, 2009, 32, 895-906.	2.4	14
90	A Strategy for Adenovirus Vector Targeting with a Secreted Single Chain Antibody. PLoS ONE, 2009, 4, e8355.	2.5	25

#	Article	IF	Citations
91	Optimization of Capsid-Incorporated Antigens For A Novel Adenovirus Vaccine Approach. Virology Journal, 2008, 5, 98.	3.4	42
92	Localization of the N-Terminus of Minor Coat Protein IIIa in the Adenovirus Capsid. Journal of Molecular Biology, 2008, 383, 923-934.	4.2	37
93	Three-Dimensional Structure of Canine Adenovirus Serotype 2 Capsid. Journal of Virology, 2008, 82, 3192-3203.	3.4	64
94	A Fiber-Modified Mesothelin Promoter–Based Conditionally Replicating Adenovirus for Treatment of Ovarian Cancer. Clinical Cancer Research, 2008, 14, 3582-3588.	7.0	28
95	A Mosaic Fiber Adenovirus Serotype 5 Vector Containing Reovirus $lf1$ and Adenovirus Serotype 3 Knob Fibers Increases Transduction in an Ovarian Cancer Ex vivo System via a Coxsackie and Adenovirus Receptorâ e 1ndependent Pathway. Clinical Cancer Research, 2007, 13, 2777-2783.	7.0	23
96	Gene delivery into malignant glioma by infectivity-enhanced adenovirus: In vivo versus in vitro models. Neuro-Oncology, 2007, 9, 280-290.	1.2	9
97	Eradication of Therapy-Resistant Human Prostate Tumors Using a Cancer Terminator Virus. Cancer Research, 2007, 67, 5434-5442.	0.9	78
98	Thermostability/Infectivity Defect Caused by Deletion of the Core Protein V Gene in Human Adenovirus Type 5 Is Rescued by Thermo-selectable Mutations in the Core Protein X Precursor. Journal of Molecular Biology, 2007, 366, 1142-1160.	4.2	32
99	Combining high selectivity of replicationviaCXCR4 promoter with fiber chimerism for effective adenoviral oncolysis in breast cancer. International Journal of Cancer, 2007, 120, 935-941.	5.1	12
100	Treatment of ovarian cancer with a novel dual targeted conditionally replicative adenovirus (CRAd). Gynecologic Oncology, 2007, 105, 113-121.	1.4	33
101	Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): Novel gene therapeutic for metastatic melanoma. Toxicology and Applied Pharmacology, 2007, 224, 300-307.	2.8	78
102	Identifying the safety profile of a novel infectivity-enhanced conditionally replicative adenovirus, Ad5-Δ24-RGD, in anticipation of a phase I trial for recurrent ovarian cancer. American Journal of Obstetrics and Gynecology, 2007, 196, 389.e1-389.e10.	1.3	33
103	Generation and selection of targeted adenoviruses embodying optimized vector properties. Virus Research, 2006, 116, 185-195.	2.2	26
104	An adenovirus serotype 5 vector with fibers derived from ovine atadenovirus demonstrates CAR-independent tropism and unique biodistribution in mice. Virology, 2006, 350, 103-115.	2.4	34
105	Core labeling of adenovirus with EGFP. Virology, 2006, 351, 291-302.	2.4	25
106	Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecologic Oncology, 2006, 100, 521-532.	1.4	32
107	lonizing radiation enhances adenoviral vector expressingmda-7/IL-24-mediated apoptosis in human ovarian cancer. Journal of Cellular Physiology, 2006, 208, 298-306.	4.1	43
108	Combining chemotherapy with virotherapy: A novel treatment strategy for malignant pleural mesothelioma. Cancer Biology and Therapy, 2006, 5, 236-237.	3.4	2

#	Article	IF	Citations
109	Dynamic Monitoring of Oncolytic Adenovirus In Vivo by Genetic Capsid Labeling. Journal of the National Cancer Institute, 2006, 98, 203-214.	6.3	59
110	Triple-Targeted Oncolytic Adenoviruses Featuring the Cox2 Promoter, E1A Transcomplementation, and Serotype Chimerism for Enhanced Selectivity for Ovarian Cancer Cells. Molecular Therapy, 2006, 14, 164-174.	8.2	61
111	A conditionally replicative adenovirus that codes for a TK-GFP fusion protein (Ad5Delta24TK-GFP) for evaluation of the potency of oncolytic virotherapy combined with molecular chemotherapy. International Journal of Molecular Medicine, 2006, 18, 751-9.	4.0	18
112	Complex mosaicism is a novel approach to infectivity enhancement of adenovirus type 5-based vectors. Cancer Gene Therapy, 2005, 12, 475-486.	4.6	42
113	Oncolytic adenoviruses – selective retargeting to tumor cells. Oncogene, 2005, 24, 7775-7791.	5.9	111
114	Adenoviruses with an RGD-4C modification of the fiber knob elicit a neutralizing antibody response but continue to allow enhanced gene delivery. Gynecologic Oncology, 2005, 96, 341-348.	1.4	15
115	In vivo analysis of a genetically modified adenoviral vector targeted to human CD40 using a novel transient transgenic model. Journal of Gene Medicine, 2005, 7, 1517-1525.	2.8	20
116	Targeted Gene Therapy for Ovarian Cancer. Current Gene Therapy, 2005, 5, 643-653.	2.0	22
117	Fluorescently tagged canine adenovirus via modification with protein IX–enhanced green fluorescent protein. Journal of General Virology, 2005, 86, 3201-3208.	2.9	27
118	Identification of Sites in Adenovirus Hexon for Foreign Peptide Incorporation. Journal of Virology, 2005, 79, 3382-3390.	3.4	85
119	High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biology and Therapy, 2005, 4, 289-294.	3.4	37
120	A Single-Component CD40-Targeted Adenovirus Vector Displays Highly Efficient Transduction and Activation of Dendritic Cells in a Human Skin Substrate System. Molecular Pharmaceutics, 2005, 2, 218-223.	4.6	21
121	Reovirus $large large l$	2.1	22
122	Genetic Targeting Strategies for Adenovirus. Molecular Pharmaceutics, 2005, 2, 341-347.	4.6	67
123	A fiber-modified, secretory leukoprotease inhibitor promoter-based conditionally replicating adenovirus for treatment of ovarian cancer. Clinical Cancer Research, 2005, 11, 1327-35.	7.0	32
124	Adenovirus-Mediated Gene Delivery to Dendritic Cells. , 2004, 246, 139-154.		14
125	Genetic Replacement of the Adenovirus Shaft Fiber Reduces Liver Tropism in Ovarian Cancer Gene Therapy. Human Gene Therapy, 2004, 15, 509-518.	2.7	36
126	Adenovirus serotype 3 utilizes CD80 (B7.1) and CD86 (B7.2) as cellular attachment receptors. Virology, 2004, 322, 349-359.	2.4	132

#	Article	IF	CITATIONS
127	An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology, 2004, 324, 103-116.	2.4	67
128	Infectivity enhanced adenoviral-mediated mda-7/IL-24 gene therapy for ovarian carcinoma. Gynecologic Oncology, 2004, 94, 352-362.	1.4	28
129	Retargeting of adenoviral infection to melanoma: Combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. International Journal of Cancer, 2004, 108, 136-145.	5.1	75
130	Gene transfer to cervical cancer with fiber-modified adenoviruses. International Journal of Cancer, $2004, 111, 698-704$.	5.1	36
131	Inter-patient variation in efficacy of five oncolytic adenovirus candidates for ovarian cancer therapy. Journal of Gene Medicine, 2004, 6, 1333-1342.	2.8	34
132	Enhanced Gene Transfer to Mouse Dendritic Cells Using Adenoviral Vectors Coated with a Novel Adapter Molecule. Molecular Therapy, 2004, 9, 712-720.	8.2	76
133	Fiber-mosaic adenovirus as a novel approach to design genetically modified adenoviral vectors. Virus Research, 2004, 105, 35-46.	2.2	20
134	Transductional Targeting of Adenoviral Cancer Gene Therapy. Current Gene Therapy, 2004, 4, 337-346.	2.0	75
135	A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism. Virology, 2003, 309, 282-293.	2.4	57
136	Modulation of renal glomerular disease using remote delivery of adenoviral-encoded solubletype II TGF-Î ² receptor fusion molecule. Journal of Gene Medicine, 2003, 5, 839-851.	2.8	19
137	Coupling endoplasmic reticulum stress to cell death program in isolated human pancreatic islets: effects of gene transfer of Bcl-2. Transplant International, 2003, 16, 537-542.	1.6	26
138	CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispecific single-chain Fv antibody enhances cytotoxic T cell activation. Vaccine, 2003, 21, 2268-2272.	3.8	55
139	Engineering Targeted Bacteriophage as Evolvable Vectors for Therapeutic Gene Delivery. , 2003, , 405-428.		O
140	Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Molecular Therapy, 2003, 8, 449-458.	8.2	159
141	Genetically Targeted Adenovirus Vector Directed to CD40-Expressing Cells. Journal of Virology, 2003, 77, 11367-11377.	3.4	103
142	Alternative Strategies for Targeted Delivery of Nucleic Acid-Liposome Complexes., 2003,, 1-16.		0
143	Selection of Peptides on Phage. , 2003, , 547-579.		3
144	Single-Chain Fv Fragments from Phage Display Libraries. , 2003, , 597-620.		1

#	Article	IF	CITATIONS
145	Strategies to Alter the Tropism of Adenoviral Vectors via Genetic Capsid Modification., 2003,, 171-200.		1
146	Mechanisms of Retroviral Particle Maturation and Attachment., 2003,, 241-251.		0
147	Targeting Retroviral Vectors Using Molecular Bridges. , 2003, , 253-266.		O
148	Genetic Engineering of Targeted Retroviral Vectors., 2003,, 293-320.		5
149	Tumor/Tissue-Selective Promoters. , 2003, , 457-479.		O
150	Physiological Targeting., 2003,, 505-525.		0
151	Genetic Targeting of Retroviral Vectors. , 2003, , 267-291.		4
152	Generation of Safe, Targetable Sindbis Vectors That Have the Potential for Direct in vivo Gene Therapy. , 2003, , 353-375.		1
153	Targeted Gene Delivery via Lipidic Vectors. , 2003, , 17-32.		1
154	Immunoliposomes: A Targeted Delivery Tool for Cancer Treatment. , 2003, , 33-62.		3
155	Receptor-Directed Gene Delivery Using Molecular Conjugates. , 2003, , 63-86.		2
156	Conjugate-Based Targeting of Adeno-Associated Virus Vectors. , 2003, , 201-219.		0
157	Receptor Targeting of Adeno-Associated Virus Vectors. , 2003, , 221-239.		0
158	Targeting Bacteriophage Vectors. , 2003, , 429-455.		0
159	Retroviral Particle Display for Complex Glycosylated and Disulfide-Bonded Protein Domains. , 2003, , 621-634.		0
160	Cell Surface Display and Cytometric Screening for Protein Ligand Isolation and Engineering. , 2003, , 635-657.		0
161	Monitoring Gene Therapy by Positron Emission Tomography. , 2003, , 659-685.		3
162	Clostridium-Mediated Transfer of Therapeutic Proteins to Solid Tumors. , 2003, , 527-546.		1

#	Article	IF	CITATIONS
163	Targeting of Adenoviral Gene Therapy Vectors: The Flexibility of Chemical and Molecular Conjugation. , 2003, , 123-141.		1
164	Targeting of Poliovirus Replicons to Neurons in the Central Nervous System., 2003,, 337-352.		0
165	Pseudotyping of Adenoviral Vectors., 2003,, 87-121.		0
166	Targeting Measles Virus Entry. , 2003, , 321-336.		0
167	Genetic Targeting of Adenoviral Vectors. , 2003, , 143-170.		3
168	Redirecting the Tropism of HSV-1 for Gene Therapy Applications. , 2003, , 377-403.		0
169	Antibody Phage Display Libraries for Use in Therapeutic Gene Targeting. , 2003, , 581-596.		0
170	CD40 is expressed on ovarian cancer cells and can be utilized for targeting adenoviruses. Clinical Cancer Research, 2003, 9, 619-24.	7.0	29
171	Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Research, 2003, 63, 847-53.	0.9	73
172	Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity. Clinical Cancer Research, 2003, 9, 2701-10.	7.0	54
173	Modulation of Adenovirus Vector Tropism via Incorporation of Polypeptide Ligands into the Fiber Protein. Journal of Virology, 2002, 76, 8621-8631.	3.4	137
174	Engineering of Adenovirus Vectors Containing Heterologous Peptide Sequences in the C Terminus of Capsid Protein IX. Journal of Virology, 2002, 76, 6893-6899.	3.4	153
175	Gene Transfer to Ovarian Cancer Versus Normal Tissues with Fiber-Modified Adenoviruses. Molecular Therapy, 2002, 5, 695-704.	8.2	170
176	In Vivo Molecular Chemotherapy and Noninvasive Imaging With an Infectivity-Enhanced Adenovirus. Journal of the National Cancer Institute, 2002, 94, 741-749.	6.3	75
177	Prolonged Maturation and Enhanced Transduction of Dendritic Cells Migrated from Human Skin Explants After In Situ Delivery of CD40-Targeted Adenoviral Vectors. Journal of Immunology, 2002, 169, 5322-5331.	0.8	66
178	Double Modification of Adenovirus Fiber with RGD and Polylysine Motifs Improves Coxsackievirus–Adenovirus Receptor-Independent Gene Transfer Efficiency. Human Gene Therapy, 2002, 13, 1647-1653.	2.7	127
179	Serum and Ascites Neutralizing Antibodies in Ovarian Cancer Patients Treated with Intraperitoneal Adenoviral Gene Therapy. Human Gene Therapy, 2002, 13, 1505-1514.	2.7	38
180	Genetically Modified Adenovirus Vector Containing an RGD Peptide in the HI Loop of the Fiber Knob Improves Gene Transfer to Nonhuman Primate Isolated Pancreatic Islets. American Journal of Transplantation, 2002, 2, 237-243.	4.7	30

#	Article	IF	Citations
181	Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clinical Cancer Research, 2002, 8, 275-80.	7.0	191
182	Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Research, 2002, 62, 609-16.	0.9	75
183	Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Research, 2002, 62, 1266-70.	0.9	115
184	The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clinical Cancer Research, 2002, 8, 3348-59.	7.0	75
185	Gene Therapy for the Treatment of Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2001, 16, 275-288.	1.0	14
186	Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nature Biotechnology, 2001, 19, 838-842.	17.5	219
187	Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Therapy, 2001, 8, 342-351.	4.6	71
188	Midkine and cyclooxygenase-2 promoters are promising for adenoviral vector gene delivery of pancreatic carcinoma. Cancer Gene Therapy, 2001, 8, 990-996.	4.6	47
189	Efficient Gene Transduction by RGB-fiber Modified Recombinant Adenovirus into Dendritic Cells. Japanese Journal of Cancer Research, 2001, 92, 321-327.	1.7	17
190	Genetic Targeting of an Adenovirus Vector via Replacement of the Fiber Protein with the Phage T4 Fibritin. Journal of Virology, 2001, 75, 4176-4183.	3.4	192
191	Adeno-Associated Virus Type 2-Mediated Transduction of Human Monocyte-Derived Dendritic Cells: Implications for Ex Vivo Immunotherapy. Journal of Virology, 2001, 75, 9493-9501.	3.4	76
192	An Adenovirus with Enhanced Infectivity Mediates Molecular Chemotherapy of Ovarian Cancer Cells and Allows Imaging of Gene Expression. Molecular Therapy, 2001, 4, 223-231.	8.2	119
193	Replicative adenoviruses for cancer therapy. Nature Biotechnology, 2000, 18, 723-727.	17.5	403
194	Tailoring vectors through DNA shuffling. Nature Genetics, 2000, 25, 366-367.	21.4	1
195	Targeting of adenoviral vectors through a bispecific single-chain antibody. Cancer Gene Therapy, 2000, 7, 901-904.	4.6	145
196	Ectodomain of Coxsackievirus and Adenovirus Receptor Genetically Fused to Epidermal Growth Factor Mediates Adenovirus Targeting to Epidermal Growth Factor Receptor-Positive Cells. Journal of Virology, 2000, 74, 6875-6884.	3.4	187
197	A Targetable, Injectable Adenoviral Vector for Selective Gene Delivery to Pulmonary Endothelium in Vivo. Molecular Therapy, 2000, 2, 562-578.	8.2	203
198	Using a Tropism-Modified Adenoviral Vector to Circumvent Inhibitory Factors in Ascites Fluid. Human Gene Therapy, 2000, 11, 1657-1669.	2.7	68

#	Article	IF	Citations
199	Blood clearance rates of adenovirus type 5 in mice. Journal of General Virology, 2000, 81, 2605-2609.	2.9	352
200	Strategies to Adapt Adenoviral Vectors for Targeted Delivery. Annals of the New York Academy of Sciences, 1999, 886, 158-171.	3.8	142
201	CAR-Independent Gene Transfer to Accomplish Efficient and Specific Genetic Modification of Target Cells Via Adenoviral Vectors. Nature Biotechnology, 1999, 17, 6-6.	17.5	0
202	A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nature Biotechnology, 1999, 17, 470-475.	17.5	132
203	An Advanced Generation of Adenoviral Vectors Selectively Enhances Gene Transfer for Ovarian Cancer Gene Therapy Approaches. Gynecologic Oncology, 1999, 74, 227-234.	1.4	102
204	Induction of specific T-cell tolerance by adenovirus-transfected, Fas ligand-producing antigen-presenting cells. Nature Biotechnology, 1998, 16, 1045-1049.	17.5	85
205	Re-expression of p16lNK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene, 1998, 16, 3087-3095.	5.9	125
206	Viral vectors show promise in Colorado. Nature Biotechnology, 1998, 16, 422-423.	17.5	0
207	An Adenovirus Vector with Genetically Modified Fibers Demonstrates Expanded Tropism via Utilization of a Coxsackievirus and Adenovirus Receptor-Independent Cell Entry Mechanism. Journal of Virology, 1998, 72, 9706-9713.	3.4	713
208	Characterization of an Adenovirus Vector Containing a Heterologous Peptide Epitope in the HI Loop of the Fiber Knob. Journal of Virology, 1998, 72, 1844-1852.	3.4	296
209	Adenoviral/retroviral vector chimeras: a novel strategy to achieve highâ€efficiency stable transduction in vivo. FASEB Journal, 1997, 11, 624-634.	0.5	59
210	Stable in vivo gene transduction via a novel adenoviral/retroviral chimeric vector. Nature Biotechnology, 1997, 15, 866-870.	17.5	146
211	Tumor localization of a radiolabeled bombesin analogue in mice bearing human ovarian tumors induced to express the gastrin-releasing peptide receptor by an adenoviral vector. Cancer, 1997, 80, 2419-2424.	4.1	21
212	Targeted gene delivery by tropism-modified adenoviral vectors. Nature Biotechnology, 1996, 14, 1574-1578.	17.5	428
213	Section Review Oncologic, Endocrine & Metabolic: Gene therapy for cancer therapeutics. Expert Opinion on Therapeutic Patents, 1996, 6, 1267-1284.	5.0	3
214	High-Efficiency Gene Transfer Mediated by Adenovirus-Polylysine-DNA Complexes. Annals of the New York Academy of Sciences, 1994, 716, 36-58.	3.8	44
215	Development of an optimized conditionally replicative adenoviral agent for ovarian cancer. International Journal of Oncology, 1992, 32, 1179-1188.	3.3	12
216	Gene Transfer and Expression in the Vascular Endothelium. , 0, , 1725-1733.		0

ARTICLE IF CITATIONS

217 Vector Targeting. , 0, , 223-228. 0