Antonio Gomes de Souza Filho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9001233/publications.pdf

Version: 2024-02-01

288 papers

14,449 citations

20817 60 h-index 23533 111 g-index

290 all docs

290 docs citations

times ranked

290

15948 citing authors

#	Article	IF	CITATIONS
1	Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 2002, 40, 2043-2061.	10.3	1,288
2	Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics, 2003, 5, 139-139.	2.9	883
3	Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 5355-5377.	3.4	571
4	Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering. Physical Review Letters, 2001, 88, 027401.	7.8	494
5	G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Physical Review B, 2002, 65,	3.2	430
6	Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids and Surfaces B: Biointerfaces, 2014, 113, 115-124.	5.0	342
7	Inhomogeneous optical absorption around theKpoint in graphite and carbon nanotubes. Physical Review B, 2003, 67, .	3.2	257
8	Single Nanotube Raman Spectroscopy. Accounts of Chemical Research, 2002, 35, 1070-1078.	15.6	234
9	Double resonance Raman spectroscopy of single-wall carbon nanotubes. New Journal of Physics, 2003, 5, 157-157.	2.9	229
10	Nanowires and nanotubes. Materials Science and Engineering C, 2003, 23, 129-140.	7.3	198
11	Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon, 2015, 84, 82-90.	10.3	187
12	Linewidth of the Raman features of individual single-wall carbon nanotubes. Physical Review B, 2002, 66, .	3.2	181
13	Optical properties of Sm3+ doped lead fluoroborate glasses. Journal of Physics and Chemistry of Solids, 2000, 61, 1535-1542.	4.0	166
14	Single Nanotube Raman Spectroscopy. ChemInform, 2003, 34, no.	0.0	160
15	Physical properties of low-dimensional <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:mrow><td>>4ភាតាl:mr</td><td>′o1⁄630x mml:m</td></mml:msup></mml:mrow></mml:math>	> 4ភាតាl: mr	′o 1⁄63 0x mml:m
16	1,2-Dichlorobenzene Interacting with Carbon Nanotubes. Nano Letters, 2004, 4, 1285-1288.	9.1	153
17	Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Physical Review B, 2002, 66, .	3.2	152
18	Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Physical Review B, 2001, 63, .	3.2	149

#	Article	IF	CITATIONS
19	Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology, 2003, 14, 1130-1139.	2.6	143
20	Raman spectroscopy of graphitic foams. Physical Review B, 2005, 71, .	3.2	138
21	Review on the symmetry-related properties of carbon nanotubes. Physics Reports, 2006, 431, 261-302.	25.6	138
22	Thermal decomposition and structural reconstruction effect on Mg–Fe-based hydrotalcite compounds. Journal of Solid State Chemistry, 2004, 177, 3058-3069.	2.9	137
23	Raman evidence for pressure-induced formation of diamondene. Nature Communications, 2017, 8, 96.	12.8	132
24	Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 935-940.	3.3	129
25	Chemical doping-induced gap opening and spin polarization in graphene. Physical Review B, 2008, 77, .	3.2	128
26	Resonance effects on the Raman spectra of graphene superlattices. Physical Review B, 2013, 88, .	3.2	128
27	Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects. Physical Review B, 2002, 65, .	3.2	124
28	Resonance Raman Spectra of Carbon Nanotubes by Cross-Polarized Light. Physical Review Letters, 2003, 90, 107403.	7.8	124
29	Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Physical Review B, 2002, 66, .	3.2	118
30	The Concept of Cutting Lines in Carbon Nanotube Science. Journal of Nanoscience and Nanotechnology, 2003, 3, 431-458.	0.9	115
31	Diameter dependence of the RamanD-band in isolated single-wall carbon nanotubes. Physical Review B, 2001, 64, .	3.2	112
32	Raman Studies of Carbon Nanostructures. Annual Review of Materials Research, 2016, 46, 357-382.	9.3	112
33	Pressure-induced structural phase transitions and amorphization in selected molybdates and tungstates. Progress in Materials Science, 2012, 57, 1335-1381.	32.8	106
34	Raman scattering study of the PbZr1 \hat{a}^{\prime} xTixO3system: Rhombohedral-monoclinic-tetragonal phase transitions. Physical Review B, 2002, 66, .	3.2	99
35	Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Physical Review B, 2002, 65, .	3.2	99
36	Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes. Physical Review B, 2004, 69, .	3.2	98

#	Article	IF	Citations
37	Alkali metal intercalated titanate nanotubes: A vibrational spectroscopy study. Vibrational Spectroscopy, 2011, 55, 183-187.	2.2	95
38	Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology, 2010, 21, 185102.	2.6	93
39	Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. Journal of the Brazilian Chemical Society, 2006, 17, 393-402.	0.6	90
40	Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Physical Review B, 2003, 67, .	3.2	88
41	Ab initio study of covalently functionalized carbon nanotubes. Chemical Physics Letters, 2006, 430, 71-74.	2.6	86
42	Electronic transition energyEiifor an isolated(n,m)single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Physical Review B, 2001, 63, .	3.2	84
43	Unveiling the Role of Oxidation Debris on the Surface Chemistry of Graphene through the Anchoring of Ag Nanoparticles. Chemistry of Materials, 2012, 24, 4080-4087.	6.7	84
44	Switching on magnetism in Ni-doped graphene: Density functional calculations. Physical Review B, 2008, 78, .	3.2	83
45	Structural properties of CaCu3Ti4O12 obtained by mechanical alloying. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 96, 275-283.	3.5	81
46	Raman Spectra in Vanadate Nanotubes Revisited. Nano Letters, 2004, 4, 2099-2104.	9.1	81
47	Pressure-Induced Collapse in Double-Walled Carbon Nanotubes: Chemical and Mechanical Screening Effects. Journal of Physical Chemistry C, 2011, 115, 5378-5384.	3.1	79
48	Interband optical transitions in left- and right-handed single-wall carbon nanotubes. Physical Review B, 2004, 69, .	3.2	77
49	Anomalous two-peakG′-band Raman effect in one isolated single-wall carbon nanotube. Physical Review B, 2002, 65, .	3.2	76
50	Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	75
51	Raman study of morphotropic phase boundary inPbZr1â^'xTixO3at low temperatures. Physical Review B, 2001, 63, .	3.2	73
52	Phonons in ferroelectric Bi2WO6: Raman and infrared spectra and lattice dynamics. Applied Physics Letters, 2008, 92, .	3.3	73
53	Emergence of Atypical Properties in Assembled Graphene Nanoribbons. Physical Review Letters, 2011, 107, 135501.	7.8	69
54	Raman spectroscopy on one isolated carbon nanotube. Physica B: Condensed Matter, 2002, 323, 15-20.	2.7	68

#	Article	IF	CITATIONS
55	Molecular Spintronics: Destructive Quantum Interference Controlled by a Gate. Journal of the American Chemical Society, 2014, 136, 15065-15071.	13.7	65
56	Monoclinic phase of PbZr0.52Ti0.48O3ceramics: Raman and phenomenological thermodynamic studies. Physical Review B, 2000, 61, 14283-14286.	3.2	64
57	Dispersive Raman spectra observed in graphite and single wall carbon nanotubes. Physica B: Condensed Matter, 2002, 323, 100-106.	2.7	64
58	Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes. Chemical Physics Letters, 2005, 406, 54-59.	2.6	63
59	Linear carbon chains encapsulated in multiwall carbon nanotubes: Resonance Raman spectroscopy and transmission electron microscopy studies. Carbon, 2015, 90, 172-180.	10.3	63
60	Phonon Trigonal Warping Effect in Graphite and Carbon Nanotubes. Physical Review Letters, 2003, 90, 027403.	7.8	62
61	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">W</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:msub></mml:msub><mml:msub><mml:mo>:</mml:mo></mml:msub><nml:msub></nml:msub></mml:msub>:<td>3.2 nml·mi</td><td>62</td></mml:mrow>	3.2 nml·mi	62
62	mathyariant='normal' > Eux/mml/ml> < mml/mrow> < mml/mn>	7.8	p>
63	Strain-Induced Interference Effects on the Resonance Raman Cross Section of Carbon Nanotubes. Physical Review Letters, 2005, 95, 217403.	7.8	61
64	Doped Carbon Nanotubes: Synthesis, Characterization and Applications. Topics in Applied Physics, 2007, , 531-566.	0.8	59
65	Coexistence of triclinic and monoclinic phases in WO3 ceramics. Journal of Raman Spectroscopy, 2000, 31, 451-454.	2.5	58
66	Structural, morphological and vibrational properties of titanate nanotubes and nanoribbons. Journal of the Brazilian Chemical Society, 2009, 20, 167-175.	0.6	58
67	Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes. Journal of Hazardous Materials, 2011, 189, 391-396.	12.4	57
68	Raman scattering and x-ray diffraction studies of polycrystallineCaCu3Ti4O12under high-pressure. Physical Review B, 2004, 70, .	3.2	56
69	Charge transfer effects in acid treated single-wall carbon nanotubes. Carbon, 2005, 43, 2495-2500.	10.3	56
70	Decorating Titanate Nanotubes with CeO ₂ Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 20234-20239.	3.1	56
71	Suppression of the hemolytic effect of mesoporous silica nanoparticles after protein corona interaction: independence of the surface microchemical environment. Journal of the Brazilian Chemical Society, 2012, 23, 1807-1814.	0.6	55
72	Pressure-induced structural transformations in the molybdateSc2(MoO4)3. Physical Review B, 2004, 69, .	3.2	52

#	Article	lF	CITATIONS
73	Temperatureâ€dependent Raman scattering studies of Na ₂ MoO ₄ . Journal of Raman Spectroscopy, 2008, 39, 937-941.	2.5	52
74	Interaction of graphene oxide with cell culture medium: Evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. Materials Science and Engineering C, 2019, 100, 363-377.	7.3	52
75	Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra. Chemical Physics Letters, 2002, 354, 62-68.	2.6	51
76	Structural and thermal properties of Co–Cu–Fe hydrotalcite-like compounds. Journal of Solid State Chemistry, 2005, 178, 142-152.	2.9	51
77	A comparative study of negative thermal expansion materials Sc2(MoO4)3 and Al2(WO4)3 crystals. Vibrational Spectroscopy, 2007, 44, 69-77.	2.2	51
78	High-pressure Raman study of Al2(WO4)3. Journal of Solid State Chemistry, 2004, 177, 2002-2006.	2.9	50
79	Surface Chemistry in the Process of Coating Mesoporous SiO ₂ onto Carbon Nanotubes Driven by the Formation of SiOC Bonds. Chemistry - A European Journal, 2011, 17, 3228-3237.	3.3	50
80	Selection rules for one- and two-photon absorption by excitons in carbon nanotubes. Physical Review B, 2006, 73 , .	3.2	48
81	Lattice dynamics and lowâ€temperature Raman spectroscopy studies of PMN–PT relaxors. Journal of Raman Spectroscopy, 2009, 40, 1144-1149.	2.5	48
82	Optical absorption of graphite and single-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1099-1105.	2.3	47
83	Temperature dependent behavior of single walled MoO3 nanotubes: A Raman spectroscopy study. Vibrational Spectroscopy, 2010, 54, 179-183.	2.2	47
84	Effects of pressure on the structural and electronic properties of linear carbon chains encapsulated in double wall carbon nanotubes. Carbon, 2018, 133, 446-456.	10.3	47
85	Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes. Physical Review B, 2001, 65, .	3.2	46
86	Resonance Raman scattering studies inBr2-adsorbed double-wall carbon nanotubes. Physical Review B, 2006, 73, .	3.2	46
87	Linear Carbon Chains under High-Pressure Conditions. Journal of Physical Chemistry C, 2015, 119, 10669-10676.	3.1	46
88	Biaxial Strain Transfer in Supported Graphene. Nano Letters, 2017, 17, 21-27.	9.1	46
89	Raman scattering studies of graphene under high pressure. Journal of Raman Spectroscopy, 2018, 49, 121-129.	2.5	45
90	Selective Tuning of the Electronic Properties of Coaxial Nanocables through Exohedral Doping. Nano Letters, 2007, 7, 2383-2388.	9.1	43

#	Article	IF	CITATIONS
91	Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon nanotubes. Chemical Physics Letters, 2007, 437, 79-82.	2.6	41
92	Structural and Phonon Properties of Bundled Single- and Double-Wall Carbon Nanotubes Under Pressure. Journal of Physical Chemistry C, 2012, 116, 22637-22645.	3.1	41
93	Influence of hydrothermal carbonization on formation of curved graphite structures obtained from a lignocellulosic precursor. Carbon, 2014, 78, 609-612.	10.3	40
94	Structural and vibrational properties of nanocrystals. Journal of Physics and Chemistry of Solids, 2007, 68, 622-627.	4.0	39
95	Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. Chemical Physics Letters, 2009, 473, 96-101.	2.6	39
96	Towards long-term colloidal stability of silica-based nanocarriers for hydrophobic molecules: beyond the Stöber method. Chemical Communications, 2012, 48, 591-593.	4.1	39
97	Phase transition in WO3microcrystals obtained by sintering process. Journal of Raman Spectroscopy, 2001, 32, 695-699.	2.5	36
98	Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	36
99	Pressure effects in the Raman spectrum of WO3 microcrystals. Physical Review B, 2000, 62, 3699-3703.	3.2	35
100	Raman studies on 0.4 nm diameter single wall carbon nanotubes. Chemical Physics Letters, 2002, 351, 27-34.	2.6	35
101	Temperature-induced phase transition in h-MoO3: Stability loss mechanism uncovered by Raman spectroscopy and DFT calculations. Vibrational Spectroscopy, 2018, 98, 98-104.	2.2	35
102	Science and Applications of Single-Nanotube Raman Spectroscopy. Journal of Nanoscience and Nanotechnology, 2003, 3, 19-37.	0.9	34
103	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:msub></mml:msub></mml:msub></mml:mrow> .	3.2	34
104	Physical Review B, 2007, 76, . Evidence of magnetic polaronic states inLa0.70Sr0.30Mn1â°'xFexO3manganites. Physical Review B, 2003, 67, .	3.2	33
105	Structural and dielectric properties of Nd3+-doped Ba0.77Ca0.23TiO3 ceramics. Journal of Applied Physics, 2005, 97, 104113.	2.5	33
106	Temperatureâ€dependent Raman spectroscopy study in MoO ₃ nanoribbons. Journal of Raman Spectroscopy, 2012, 43, 1407-1412.	2.5	33
107	Phonon properties of \hat{l}^2 -Ag2MoO4: Raman spectroscopy and ab initio calculations. Vibrational Spectroscopy, 2016, 86, 97-102.	2.2	33
108	Torsional instability of chiral carbon nanotubes. Physical Review B, 2010, 81, .	3.2	32

#	Article	IF	CITATIONS
109	Pressure-Induced Selectivity for Probing Inner Tubes in Double- and Triple-Walled Carbon Nanotubes: A Resonance Raman Study. Journal of Physical Chemistry C, 2014, 118, 8153-8158.	3.1	32
110	Spectroscopic studies ofLixFePO4andLixM0.03Fe0.97PO4(M=Cr,Cu,Al,Ti). Physical Review B, 2005, 72, .	3.2	31
111	From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes. Carbon, 2019, 141, 568-579.	10.3	31
112	International collaboration in Brazilian science: financing and impact. Scientometrics, 2020, 125, 2745-2772.	3.0	31
113	Pressure-induced phase transformations in I-alanine crystals. Journal of Physics and Chemistry of Solids, 2008, 69, 1641-1645.	4.0	30
114	Probing Spatial Phonon Correlation Length in Post-Transition Metal Monochalcogenide GaS Using Tip-Enhanced Raman Spectroscopy. Nano Letters, 2019, 19, 7357-7364.	9.1	30
115	Physical Membrane-Stress-Mediated Antimicrobial Properties of Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2021, 9, 3203-3212.	6.7	29
116	Funcionalização de nanotubos de Carbono. Quimica Nova, 2007, 30, 1695-1703.	0.3	28
117	Machine Learning and Natural Language Processing Enable a Data-Oriented Experimental Design Approach for Producing Biochar and Hydrochar from Biomass. Chemistry of Materials, 2022, 34, 979-990.	6.7	28
118	High-pressure dependence of Sm3+ emission in PbO–PbF2–B2O3 glasses. Journal of Materials Science Letters, 2000, 19, 135-137.	0.5	27
119	Raman scattering study of NaAl(MoO4)2crystal under high pressures. Journal of Physics Condensed Matter, 2004, 16, 5151-5161.	1.8	27
120	Resonant Raman spectra of carbon nanotube bundles observed by perpendicularly polarized light. Chemical Physics Letters, 2004, 387, 301-306.	2.6	27
121	Functionalization of single-wall carbon nanotubes through chloroform adsorption: theory and experiment. Physical Chemistry Chemical Physics, 2010, 12, 1518.	2.8	27
122	Topography-driven bionano-interactions on colloidal silica nanoparticles. ACS Applied Materials & Lorentz	8.0	27
123	Pressure-induced radial collapse in few-wall carbon nanotubes: A combined theoretical and experimental study. Carbon, 2017, 125, 429-436.	10.3	27
124	Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu(II) ions removal from water and aquatic ecotoxicity. Science of the Total Environment, 2017, 607-608, 1479-1486.	8.0	27
125	Temperature-dependent phonon dynamics of supported and suspended monolayer tungsten diselenide. AIP Advances, 2019, 9, .	1.3	27
126	Structural and optical properties of rare earth–doped (Ba0.77Ca0.23)1â^'x(Sm, Nd, Pr, Yb)xTiO3. Journal of Applied Physics, 2011, 109, .	2.5	26

#	Article	IF	Citations
127	High pressure effects on the structural and vibrational properties of antiferromagnetic KFe(MoO4)2. Journal of Physics Condensed Matter, 2005, 17, 6285-6300.	1.8	25
128	Size-controllable synthesis of nanosized-TiO2 anatase using porous Vycor glass as template. Journal of Nanoparticle Research, 2006, 8, 141-148.	1.9	25
129	Elastic properties of graphyne-based nanotubes. Computational Materials Science, 2019, 170, 109153.	3.0	25
130	Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon, 2020, 161, 758-771.	10.3	25
131	Structural and electronic properties of graphitic nanowiggles. Physical Review B, 2012, 85, .	3.2	24
132	Microstructural and electrical properties of sintered tungsten trioxide. Journal of Materials Science, 1999, 34, 1031-1035.	3.7	23
133	First principles study of 1,2-dichlorobenzene adsorption on metallic carbon nanotubes. International Journal of Quantum Chemistry, 2006, 106, 2558-2563.	2.0	23
134	Raman spectroscopy study of Na ₂ MoO ₄ ·2H ₂ O and Na ₂ MoO ₄ under hydrostatic pressure. Journal of Raman Spectroscopy, 2010, 41, 576-581.	2.5	23
135	Lattice dynamics and pressure-induced phase transitions inBi2W2O9: High-pressure Raman study. Physical Review B, 2010, 81, .	3.2	23
136	Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments. TrAC - Trends in Analytical Chemistry, 2011, 30, 437-446.	11.4	23
137	Conductive carbon–clay nanocomposites from petroleum oily sludge. Journal of Hazardous Materials, 2009, 167, 879-884.	12.4	22
138	High-pressure Raman scattering of MgMoO4. Vibrational Spectroscopy, 2013, 68, 34-39.	2.2	22
139	First and Second-Order Resonance Raman Process in Graphite and Single Wall Carbon Nanotubes. Japanese Journal of Applied Physics, 2002, 41, 4878-4882.	1.5	21
140	Pressure-induced irreversible phase transition in KSc (MoO4)2. Physical Review B, 2003, 67, .	3.2	21
141	High-pressure X-ray diffraction of L-ALANINE crystal. High Pressure Research, 2006, 26, 433-437.	1.2	21
142	Synthesis and Characterization of Seleniumâ^'Carbon Nanocables. Nano Letters, 2008, 8, 3651-3655.	9.1	21
143	Atomic-layered MoS2 on SiO2 under high pressure: Bimodal adhesion and biaxial strain effects. Physical Review Materials, 2017, 1 , .	2.4	21
144	High Catalytic Activity of Nitrogen-Containing Carbon from Molecular Sieves in Fine Chemistry. Catalysis Letters, 2009, 131, 135-145.	2.6	20

#	Article	IF	Citations
145	TiO ₂ - and CeO ₂ -Based Biphasic Coreâ€"Shell Nanoparticles with Tunable Core Sizes and Shell Thicknesses. Journal of Physical Chemistry C, 2011, 115, 10380-10387.	3.1	20
146	Effects of intercalation and inhomogeneous filling on the collapse pressure of double-wall carbon nanotubes. Physical Review B, 2012, 86, .	3.2	20
147	Pressure-induced crystal–amorphous transformation in Y2Mo3O12. Vibrational Spectroscopy, 2013, 68, 251-256.	2.2	20
148	Ab initiocalculations of CaCu3Ti4O12 under high pressure: Structural and electronic properties. Physical Review B, 2005, 72, .	3.2	19
149	Synthesis of slightly ã€^111〉-oriented 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 ceramic prepared from fine powders. Materials Chemistry and Physics, 2007, 104, 40-43.	4.0	19
150	Resonance Raman spectroscopy in Si and C ion-implanted double-wall carbon nanotubes. Physical Review B, 2009, 80, .	3.2	19
151	Nicotine adsorption on single wall carbon nanotubes. Journal of Hazardous Materials, 2010, 184, 678-683.	12.4	19
152	Mechanisms of Colloidal Stabilization of Oxidized Nanocarbons in the Presence of Polymers: Obtaining Highly Stable Colloids in Physiological Media. Journal of Physical Chemistry C, 2015, 119, 18741-18752.	3.1	19
153	Advances in single nanotube spectroscopy: Raman spectra from cross-polarized light and chirality dependence of Raman frequencies. Carbon, 2004, 42, 1067-1069.	10.3	18
154	G′ band Raman lineshape analysis in graphitic foams. Vibrational Spectroscopy, 2007, 45, 122-127.	2.2	18
155	\hat{I}^3 -Fe 2 O 3 nanoparticles dispersed in porous Vycor glass: A magnetically diluted integrated system. Journal of Applied Physics, 2009, 105, .	2.5	18
156	Benzonitrile Adsorption on Fe-Doped Carbon Nanostructures. Journal of Physical Chemistry C, 2010, 114, 10790-10795.	3.1	18
157	Evaluating the residual stress in PbTiO3thin films prepared by a polymeric chemical method. Journal Physics D: Applied Physics, 2004, 37, 744-747.	2.8	17
158	A single molecule rectifier with strong push-pull coupling. Journal of Chemical Physics, 2008, 129, 204701.	3.0	17
159	Highlighting the mechanisms of the titanate nanotubes to titanate nanoribbons transformation. Journal of Nanoparticle Research, 2011, 13, 3259-3265.	1.9	17
160	Exploring the use of biosurfactants from Bacillus subtilis in bionanotechnology: A potential dispersing agent for carbon nanotube ecotoxicological studies. Process Biochemistry, 2014, 49, 1162-1168.	3.7	17
161	Structural and vibrational properties of K ₃ Fe(MoO ₄) ₂ (Mo ₂ O ₇)—a novel layered molybdate. Journal of Physics Condensed Matter, 2009, 21, 095402.	1.8	16
162	Spin Transport of Polyacetylene Chains Bridging Zigzag Graphene Nanoribbon Electrodes: A Nonequilibrium Treatment of Structural Control and Spin Filtering. Journal of Physical Chemistry C, 2013, 117, 21178-21185.	3.1	16

#	Article	IF	CITATIONS
163	Hollow carbon nanostructures obtained from hydrothermal carbonization of lignocellulosic biomass. Journal of Materials Science, 2014, 49, 665-672.	3.7	16
164	Ordinary microfluidic electrodes combined with bulk nanoprobe produce multidimensional electric double-layer capacitances towards metal ion recognition. Sensors and Actuators B: Chemical, 2020, 305, 127482.	7.8	16
165	Raman spectroscopy polarization dependence analysis in two-dimensional gallium sulfide. Physical Review B, 2020, 102, .	3.2	16
166	Computational study of elastic, structural stability and dynamics properties of penta-graphene membrane. Chemical Physics, 2021, 542, 111052.	1.9	16
167	A Raman investigation of PbZr0.94Ti0.06O3 ceramics under high-pressure. Solid State Communications, 1999, 112, 383-386.	1.9	15
168	Temperature dependent Raman scattering study of l-ascorbic acid. Vibrational Spectroscopy, 2011, 55, 101-106.	2.2	15
169	Mo-doped WO3 nanowires for adsorbing methylene blue dye from wastewater. Journal of Materials Science, 2020, 55, 6429-6440.	3.7	15
170	Silver nanoparticles (AgNPs) internalization and passage through the Lactuca sativa (Asteraceae) outer cell wall. Functional Plant Biology, 2021, 48, 1113-1123.	2.1	15
171	Pressure-induced phase transitions in antiferroelectric CsBi(MoO4)2. Journal of Raman Spectroscopy, 2005, 36, 56-62.	2.5	14
172	Phonon properties, polymorphism, and amorphization of Dy2Mo4O15 under high hydrostatic pressure. Physical Review B, 2010, 82, .	3.2	14
173	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:math>band Raman intensity calculation in armchair edged graphene nanoribbons. Physical Review B, 2011, 83, .</pre>	3.2	14
174	Graphene nanoribbons and iron oxide nanoparticles composite as a potential candidate in DNA sensing applications. Journal of Applied Physics, 2020, 127, .	2.5	14
175	Vibrational Spectroscopy and Morphological Studies on Protein-Capped Biosynthesized Silver Nanoparticles. ACS Omega, 2020, 5, 386-393.	3.5	14
176	Electronic properties of tetragraphene nanoribbons. Physical Review Materials, 2019, 3, .	2.4	14
177	Pressure- and temperature-dependent Raman studies of KNbW2O9 hexagonal tungsten bronze. Journal of Raman Spectroscopy, 2003, 34, 199-204.	2.5	13
178	Influence of concentration and position of carboxyl groups on the electronic properties of single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2014, 16, 21602-21608.	2.8	13
179	One- and two-dimensional carbon nanostructures based on unfolded buckyballs: An <i>ab initio</i> investigation of their electronic properties. Physical Review B, 2017, 95, .	3.2	13
180	On the formation of protein corona on colloidal nanoparticles stabilized by depletant polymers. Materials Science and Engineering C, 2019, 105, 110080.	7.3	13

#	Article	IF	CITATIONS
181	Pressure-induced phase transition and fracture in α-MoO3 nanoribbons. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 47-53.	3.9	12
182	Laser-induced thermal effects in hexagonal MoO3 nanorods. Vibrational Spectroscopy, 2018, 98, 145-151.	2.2	12
183	Raman resonance tuning of quaterthiophene in filled carbon nanotubes at high pressures. Carbon, 2021, 173, 163-173.	10.3	12
184	Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube. Molecular Crystals and Liquid Crystals, 2002, 387, 21-29.	0.9	11
185	Electronic properties ofFeCl3-adsorbed single-wall carbon nanotubes. Physical Review B, 2005, 72, .	3.2	11
186	Electronic and structural properties of tetragraphenes. Carbon, 2020, 167, 403-413.	10.3	11
187	Raman scattering from one-dimensional carbon systems. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 81-87.	2.7	10
188	Electrical Rectification in Betaine Derivatives. Journal of Physical Chemistry C, 2008, 112, 12008-12011.	3.1	10
189	Lattice dynamics and high-pressure Raman scattering studies of ferroelectricK2MgWO2(PO4)2. Physical Review B, 2008, 78, .	3.2	10
190	Electronic and magnetic structures of coronene-based graphitic nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 3603.	2.8	10
191	Influence of Surface Silanization on the Physicochemical Stability of Silver Nanocoatings: A Large Length Scale Assessment. Journal of Physical Chemistry C, 2017, 121, 11300-11311.	3.1	10
192	Mechanical Properties of Pentagraphene-based Nanotubes: A Molecular Dynamics Study. MRS Advances, 2018, 3, 97-102.	0.9	10
193	Structural and electronic properties of nanotubes constructed from fragmented fullerenes. Carbon, 2019, 147, 616-627.	10.3	10
194	Temperature- and power-dependent phonon properties of suspended few layers of tungsten diselenide. Vibrational Spectroscopy, 2020, 111, 103169.	2.2	10
195	Tripentaphenes: two-dimensional acepentalene-based nanocarbon allotropes. Physical Chemistry Chemical Physics, 2020, 22, 23195-23206.	2.8	10
196	Origin of the Giant Enhanced Raman Scattering by Sulfur Chains Encapsulated inside Single-Wall Carbon Nanotubes. ACS Nano, 2021, 15, 8574-8582.	14.6	10
197	Temperature-dependent phonon dynamics and anharmonicity of suspended and supported few-layer gallium sulfide. Nanotechnology, 2020, 31, 495702.	2.6	10
198	Vibrational spectra of α-Ge(HPO4)2·H2O compound. Vibrational Spectroscopy, 2006, 40, 209-212.	2.2	9

#	Article	IF	CITATIONS
199	Pressure effects on surfactant solubilized single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 105-109.	1.5	9
200	Crystallization kinetics and thermal properties of 20Li2O–80TeO2 glass. Materials Research Bulletin, 2009, 44, 1596-1600.	5.2	9
201	Vibrational properties of Cs ₄ W ₁₁ O ₃₅ and Rb ₄ W ₁₁ O ₃₅ systems: high pressure and polarized Raman spectra. Journal of Raman Spectroscopy, 2011, 42, 474-481.	2.5	9
202	Structural depth profile and nanoscale piezoelectric properties of randomly oriented Pb(Zr _{0.50} Ti _{0.50})O ₃ thin films. Journal Physics D: Applied Physics, 2012, 45, 215304.	2.8	9
203	Enhanced Solubilization of Carbon Nanotubes in Aqueous Suspensions of Anionic–Nonionic Surfactant Mixtures. Journal of Physical Chemistry C, 2013, 117, 25138-25145.	3.1	9
204	Structural and vibrational properties of carbonophosphates: Na3MCO3PO4 (M = Mn, Fe, Co and Ni). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117298.	3.9	9
205	Raman spectroscopy study of high B2O3 content lead fluoroborate glasses. Journal of Raman Spectroscopy, 1999, 30, 525-529.	2.5	8
206	Strong interface localization of phonons in nonabrupt InN/GaN superlattices. Physical Review B, 2001, 64, .	3.2	8
207	Formation of reliable electrical and thermal contacts between graphene and metal electrodes by laser annealing. Microelectronic Engineering, 2014, 121, 55-58.	2.4	8
208	Pressure Tuning of Bromine Ionic States in Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 10609-10619.	3.1	8
209	High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device. Journal of Magnetism and Magnetic Materials, 2018, 451, 532-539.	2.3	8
210	Towards the production of natural rubber-calcium phosphate hybrid for applications as bioactive coatings. Materials Science and Engineering C, 2019, 94, 417-425.	7.3	8
211	Profiles not metrics: the case of Brazilian universities. Anais Da Academia Brasileira De Ciencias, 2021, 93, e29290261.	0.8	8
212	The concentration-pressure phase diagram for Zr-rich PbZr1-xTixO3ceramics. Journal of Physics Condensed Matter, 2000, 12, 7295-7302.	1.8	7
213	Pressure-induced phase transitions in Zr-rich PbZr1-xTixO3ceramics. Journal of Physics Condensed Matter, 2001, 13, 7305-7314.	1.8	7
214	Synthesis, characterization and catalytic properties of nanostructured porous carbon. Studies in Surface Science and Catalysis, 2008, 174, 1303-1306.	1.5	7
215	Recycling dodecylamine intercalated vanadate nanotubes. Journal of Nanoparticle Research, 2010, 12, 367-372.	1.9	7
216	Theory of zwitterionic molecular-based organic magnets. Chemical Physics Letters, 2011, 511, 294-298.	2.6	7

#	Article	IF	Citations
217	Laser-energy-dependent Raman scattering studies of graphitic foams. Physical Review B, 2007, 76, .	3.2	6
218	Probing the thermal decomposition process of layered double hydroxides through in situ 57Fe Mössbauer and in situ X-ray diffraction experiments. Journal of Materials Science, 2007, 42, 534-538.	3.7	6
219	Vibrational studies of hexagonal bronze systems: phonon calculation and high pressure induced phase transformation. Journal of Raman Spectroscopy, 2009, 40, 1150-1157.	2.5	6
220	Electronic transport properties of carbon nanotoroids. Nanotechnology, 2011, 22, 075701.	2.6	6
221	Mechanical Properties of Phagraphene Membranes: A Fully Atomistic Molecular Dynamics Investigation. MRS Advances, 2018, 3, 67-72.	0.9	6
222	Non-covalent interaction of benzonitrile with single-walled carbon nanotubes. Journal of Nanoparticle Research, 2009, 11, 2163-2170.	1.9	5
223	Electronic transmission selectivity in multiterminal graphitic nanorings. Applied Physics Letters, 2011, 98, 112111.	3.3	5
224	Graphene-like nanostructures obtained from Biomass. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	5
225	Raman spectroscopy for probing covalent functionalization of single-wall carbon nanotubes bundles with gold nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5
226	Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles. Journal of Sensors, 2015, 2015, 1-8.	1.1	5
227	Ordered porous carbons from hydrothermally treated biomass: Effects of the thermal treatments on the structure and porosity. Vibrational Spectroscopy, 2020, 111, 103175.	2.2	5
228	Tip-Enhanced Raman spectroscopy investigations of core-shell Ag-proteins nanoparticles synthesized by Rhodotorula mucilaginosa and Rhodotorula glutinis fungi. Vibrational Spectroscopy, 2020, 110, 103104.	2.2	5
229	Strong interface-induced changes on the numerical calculated Raman scattering in Si/3C–SiC superlattices. Applied Physics Letters, 2000, 77, 4316-4318.	3.3	4
230	Resonance Raman scattering: nondestructive and noninvasive technique for structural and electronic characterization of isolated single-wall carbon nanotubes. Brazilian Journal of Physics, 2002, 32, 921-924.	1.4	4
231	Preparation of Pyrochlore-Free PMN by an Alternative Chemical Method. Ferroelectrics, 2006, 334, 147-155.	0.6	4
232	Carbon Nanotubes Under High Pressure Probed by Resonance Raman Scattering. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 435-446.	0.3	4
233	Nanomaterials Properties. , 2011, , 5-22.		4
234	Improvement of Electrical and Thermal Contacts Between Carbon Nanotubes and Metallic Electrodes by Laser Annealing. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 374-380.	0.5	4

#	Article	IF	CITATIONS
235	Pressure-induced structural transformations on linear carbon chains encapsulated in carbon nanotubes: A potential route for obtaining longer chains and ultra-hard composites. Carbon, 2022, 196, 20-28.	10.3	4
236	Double resonance raman spectrain disordered graphite and singlewall carbon nanotubes. Molecular Crystals and Liquid Crystals, 2002, 387, 63-72.	0.9	3
237	Hydrotalcites: a highly efficient ecomaterial for effluent treatment originated from carbon nanotubes chemical processing. Journal of Physics: Conference Series, 2011, 304, 012024.	0.4	3
238	Optical properties of single wall carbon nanotubes dispersed in biopolymers. Journal of Physics and Chemistry of Solids, 2012, 73, 232-236.	4.0	3
239	Inflammatory and Hyperalgesic Effects of Oxidized Multi-Walled Carbon Nanotubes in Rats. Journal of Nanoscience and Nanotechnology, 2013, 13, 5276-5282.	0.9	3
240	Carbon Nanotubes: From Synthesis to Genotoxicity. Nanomedicine and Nanotoxicology, 2014, , 125-152.	0.2	3
241	Resource Letter N-1: Nanotechnology. American Journal of Physics, 2014, 82, 8-22.	0.7	3
242	Pressure-induced structural transformations in In _{2-x} Y _x (MoO ₄) Tj ETQqC	00.rgBT	/Oyerlock 10
243	Properties and Applications of Doped Carbon Nanotubes. , 2009, , 223-269.		3
244	Temperature―and Pressureâ€Dependent Phonon Dynamics Properties of Gallium Selenide Telluride. Journal of Raman Spectroscopy, 0, , .	2.5	3
245	Resonant Raman scattering of isolated single wall carbon nanotubes: Structural (n,m) determination and resonant window. AIP Conference Proceedings, 2001, , .	0.4	2
246	New Features of the Morphotropic Phase Boundary in the PbZrO 3 -PbTiO 3 System: A Raman Spectroscopy Study. Ferroelectrics, 2002, 272, 21-26.	0.6	2
247	High-pressure Raman scattering study of ferroelectric <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>K</mml:mtext><mml:mn>3</mml:mn></mml:msub><n 2010.="" 82<="" b.="" physical="" review="" td=""><td>าฑใร่ที่รนb:</td><td>·<mml:mrow< td=""></mml:mrow<></td></n></mml:mrow></mml:math>	าฑใร่ที่รนb:	· <mml:mrow< td=""></mml:mrow<>
248	Improvement of the electrical contact between carbon nanotubes and metallic electrodes by laser irradiation. , 2013 , , .		2
249	Pre-Patterned CVD Graphene: Insights on ALD deposition parameters and their influence on Al2O3 and graphene layers. MRS Advances, 2016, 1, 1401-1409.	0.9	2
250	Nanotoxicology of Carbon-Based Nanomaterials. Nanomedicine and Nanotoxicology, 2016, , 105-137.	0.2	2
251	Absorption of Light in Solids. Graduate Texts in Physics, 2018, , 365-389.	0.2	2
252	Nanomaterials Properties of Environmental Interest and How to Assess Them. , 2019, , 45-105.		2

#	Article	IF	CITATIONS
253	Flat-to-Flat Polymerization of Single-Walled Carbon Nanotubes under High Pressure Mediated by Carbon Chain Encapsulation. Journal of Physical Chemistry C, 2021, 125, 12857-12869.	3.1	2
254	Delamination of multilayer graphene stacks from its substrate through wrinkle formation under high pressures. Carbon, 2021, 185, 242-251.	10.3	2
255	Local Laser Annealing of Contacts Between MWCNTs and Metallic Electrodes. Journal of Integrated Circuits and Systems, 2014, 9, 103-109.	0.4	2
256	G-band Raman Spectra of Isolated Single Wal Carbon Nanotubes: Diameter and Chiraity Dependence. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
257	Raman Spectra from One Carbon Nanotube. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
258	Dependence of the Second-order G'-band Profile on the Electronic Structure of Single-wal Nanotubes. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
259	Reply to "Comment on â€~Monoclinic phase ofPbZr0.52Ti0.48O3ceramics: Raman and phenomenological thermodynamic studies' ― Physical Review B, 2001, 63, .	3.2	1
260	Resonance Raman Scattering in Carbon Nanotubes and Nanographites. AIP Conference Proceedings, 2003, , .	0.4	1
261	Raman Spectroscopy of Graphitic Foams. Materials Research Society Symposia Proceedings, 2004, 851, 450.	0.1	1
262	Electron-Phonon Interaction and Raman Intensities in Graphite. AIP Conference Proceedings, 2004, , .	0.4	1
263	Encapsulation of Metallocenes in Single-Wall Carbon Nanotubes: an Ab Initio Study. AIP Conference Proceedings, 2007, , .	0.4	1
264	PHYSICAL PROPERTIES OF TELLURITE GLASSES PREPARED UNDER DIFFERENT THERMAL HISTORIES. Modern Physics Letters B, 2010, 24, 527-537.	1.9	1
265	van der Waals potential barrier for cobaltocene encapsulation into single-walled carbon nanotubes: classical molecular dynamics andab initiostudy. Molecular Simulation, 2011, 37, 746-751.	2.0	1
266	Fermi-Energy-Dependent Structural Deformation of Chiral Single-Wall Carbon Nanotubes. Physical Review Applied, 2014, 2, .	3.8	1
267	Structural and electronic properties of double-walled $\hat{l}\pm$ -graphyne nanotubes. Computational Materials Science, 2021, 200, 110768.	3.0	1
268	Interface Effects on the Raman Spectra of Si/3C-SiC Superlattices. Materials Research Society Symposia Proceedings, 2000, 640, 1 .	0.1	0
269	Micro-Raman spectroscopy of isolated single wall carbon nanotube. AIP Conference Proceedings, 2001, , .	0.4	0
270	D-band Raman Spectra of Graphite and Single Wall Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	0

#	Article	IF	Citations
271	Characterization of nanographite and carbon nanotubes by polarization dependent optical spectroscopy. Materials Research Society Symposia Proceedings, 2002, 737, 521.	0.1	0
272	Anisotropy in the Phonon Dispersion Relations of Graphite and Carbon Nanotubes Measured by Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 737, 652.	0.1	0
273	New effects in the resonance Raman features in one-dimensional systems: isolated single-wall carbon nanotube studies. AIP Conference Proceedings, 2002, , .	0.4	0
274	Dispersive Bands in Graphite and Carbon Nanotubes. AIP Conference Proceedings, 2003, , .	0.4	0
275	Double resonance Raman spectroscopy and optical properties of single wall carbon nanotubes. AIP Conference Proceedings, 2004, , .	0.4	0
276	Effects of strain on the resonant Raman profile of metallic. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
277	Workshop on foundations and applications of Raman spectroscopy, Fortaleza, Ceara, Brazil, 2006. Vibrational Spectroscopy, 2007, 45, 69.	2.2	0
278	Anchoring Silanols Radicals on Carbon Nanotubes. Journal of Computational and Theoretical Nanoscience, 2009, 6, 548-551.	0.4	0
279	1st Brazilian Meeting on Raman Spectroscopy (BMRS), São Pedro, São Paulo, Brazil. Vibrational Spectroscopy, 2010, 54, 83.	2.2	0
280	Ion implantation effect on Resonance Raman spectroscopy of double-wall carbon nanotubes. , 2010, , .		0
281	Light emission and current rectification in a molecular device: Experiment and theory. Journal of Applied Physics, 2012, 112, 113108.	2.5	0
282	Disorder-Induced Rectification in a Molecular System. Brazilian Journal of Physics, 2014, 44, 30-38.	1.4	0
283	High Pressure Induced Binding Between Linear Carbon Chains and Nanotubes. Materials Research Society Symposia Proceedings, 2015, 1752, 53-58.	0.1	0
284	Lattice Vibrations. Graduate Texts in Physics, 2018, , 105-121.	0.2	0
285	Unidade de gestão de dados e de indicadores crÃticos para avaliação de desempenho institucional. Perspectivas Em Ciencia Da Informacao, 2021, 26, 157-173.	0.1	0
286	Characterization of Nanocarbons: From Graphene to Graphene Nanoribbons (GNRs) and Quantum Dots (GQDs)., 2017,, 315-338.		0
287	(Invited) Resonance Raman Spectroscopy Studies in 2D and 1D Nanocarbons. ECS Meeting Abstracts, 2019, , .	0.0	0
288	Clarice: um estudo sobre o tempo. Revista Da Anpoll, 0, 51, 26-31.	0.1	0