List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9001026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extending the Evaluation of Social Assistive Robots With Accessibility Indicators: The AUSUS Evaluation Framework. IEEE Transactions on Human-Machine Systems, 2021, 51, 601-612.	2.5	3
2	Perceptions or Actions? Grounding How Agents Interact Within a Software Architecture for Cognitive Robotics. Cognitive Computation, 2020, 12, 479-497.	3.6	9
3	An Automated Planning Model for HRI: Use Cases on Social Assistive Robotics. Sensors, 2020, 20, 6520.	2.1	2
4	Learning adversarial attack policies through multi-objective reinforcement learning. Engineering Applications of Artificial Intelligence, 2020, 96, 104021.	4.3	11
5	Multi-Layered Multi-Robot Control Architecture for the Robocup Logistics League. , 2020, , .		2
6	A Modelling and Formalisation Tool for Use Case Design in Social Autonomous Robotics. Advances in Intelligent Systems and Computing, 2020, , 656-667.	0.5	2
7	Design of a Robotic as a Service Platform to Perform Rehabilitation Therapies. Advances in Intelligent Systems and Computing, 2020, , 681-692.	0.5	0
8	A Socially Assistive Robotic Platform for Upper-Limb Rehabilitation: A Longitudinal Study With Pediatric Patients. IEEE Robotics and Automation Magazine, 2019, 26, 24-39.	2.2	24
9	Reinforcement learning for pricing strategy optimization in the insurance industry. Engineering Applications of Artificial Intelligence, 2019, 80, 8-19.	4.3	30
10	Probabilistic Policy Reuse for Safe Reinforcement Learning. ACM Transactions on Autonomous and Adaptive Systems, 2019, 13, 1-24.	0.4	3
11	Developing a Robot-Guided Interactive Simon Game for Physical and Cognitive Training. International Journal of Humanoid Robotics, 2019, 16, 1950003.	0.6	2
12	Modeling, Evaluation, and Scale on Artificial Pedestrians. ACM Computing Surveys, 2018, 50, 1-35.	16.1	47
13	On-Line Case-Based Policy Learning for Automated Planning in Probabilistic Environments. International Journal of Information Technology and Decision Making, 2018, 17, 763-800.	2.3	0
14	Towards a robust robotic assistant for Comprehensive Geriatric Assessment procedures: updating the CLARC system. , 2018, , .		8
15	CLARC: A Cognitive Robot for Helping Geriatric Doctors in Real Scenarios. Advances in Intelligent Systems and Computing, 2018, , 403-414.	0.5	5
16	LifeBots I: Building the Software Infrastructure for Supporting Lifelong Technologies. Advances in Intelligent Systems and Computing, 2018, , 391-402.	0.5	1
17	A three-layer planning architecture for the autonomous control of rehabilitation therapies based on social robots. Cognitive Systems Research, 2017, 43, 232-249.	1.9	31
18	Evaluating the Child–Robot Interaction of the NAOTherapist Platform in Pediatric Rehabilitation. International Journal of Social Robotics, 2017, 9, 343-358.	3.1	63

#	Article	IF	CITATIONS
19	Emergent behaviors and scalability for multi-agent reinforcement learning-based pedestrian models. Simulation Modelling Practice and Theory, 2017, 74, 117-133.	2.2	29
20	Planning and execution through variable resolution planning. Robotics and Autonomous Systems, 2016, 83, 214-230.	3.0	5
21	Therapy Monitoring and Patient Evaluation with Social Robots. , 2015, , .		3
22	Strategies for simulating pedestrian navigation with multiple reinforcement learning agents. Autonomous Agents and Multi-Agent Systems, 2015, 29, 98-130.	1.3	22
23	Emergent Collective Behaviors in a Multi-agent Reinforcement Learning Pedestrian Simulation: A Case Study. Lecture Notes in Computer Science, 2015, , 228-238.	1.0	Ο
24	Planning, execution and monitoring of physical rehabilitation therapies with a robotic architecture. Studies in Health Technology and Informatics, 2015, 210, 339-43.	0.2	2
25	MARL-Ped: A multi-agent reinforcement learning based framework to simulate pedestrian groups. Simulation Modelling Practice and Theory, 2014, 47, 259-275.	2.2	44
26	THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children. JMIR Rehabilitation and Assistive Technologies, 2014, 1, e1.	1.1	33
27	INTEGRATING PLANNING, EXECUTION, AND LEARNING TO IMPROVE PLAN EXECUTION. Computational Intelligence, 2013, 29, 1-36.	2.1	13
28	Learning domain structure through probabilistic policy reuse in reinforcement learning. Progress in Artificial Intelligence, 2013, 2, 13-27.	1.5	24
29	Teaching Human Poses Interactively to a Social Robot. Sensors, 2013, 13, 12406-12430.	2.1	13
30	Using automated planning for improving data mining processes. Knowledge Engineering Review, 2013, 28, 157-173.	2.1	7
31	From perception to action and vice versa: A new architecture showing how perception and action can modulate each other simultaneously. , 2013, , .		Ο
32	THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children. , 2013, , .		9
33	A META-TOOL TO SUPPORT THE DEVELOPMENT OF KNOWLEDGE ENGINEERING METHODOLOGIES AND PROJECTS. International Journal of Software Engineering and Knowledge Engineering, 2012, 22, 1055-1083.	0.6	1
34	A kinodynamic planning-learning algorithm for complex robot motor control. , 2012, , .		2
35	REINFORCEMENT LEARNING FOR DECISION-MAKING IN A BUSINESS SIMULATOR. International Journal of Information Technology and Decision Making, 2012, 11, 935-960.	2.3	9
36	A review of machine learning for automated planning. Knowledge Engineering Review, 2012, 27, 433-467.	2.1	65

#	Article	IF	CITATIONS
37	A prototype-based method for classification with time constraints: a case study on automated planning. Pattern Analysis and Applications, 2012, 15, 261-277.	3.1	8
38	Multi-agent Reinforcement Learning for Simulating Pedestrian Navigation. Lecture Notes in Computer Science, 2012, , 54-69.	1.0	19
39	Calibrating a Motion Model Based on Reinforcement Learning for Pedestrian Simulation. Lecture Notes in Computer Science, 2012, , 302-313.	1.0	3
40	Safe reinforcement learning in high-risk tasks through policy improvement. , 2011, , .		7
41	Business Simulators for Business Education and Research. , 2011, , 229-246.		Ο
42	SIMBA: A simulator for business education and research. Decision Support Systems, 2010, 48, 498-506.	3.5	45
43	Probabilistic Policy Reuse for inter-task transfer learning. Robotics and Autonomous Systems, 2010, 58, 866-871.	3.0	51
44	Learning teaching strategies in an Adaptive and Intelligent Educational System through Reinforcement Learning. Applied Intelligence, 2009, 31, 89-106.	3.3	54
45	Reinforcement learning of pedagogical policies in adaptive and intelligent educational systems. Knowledge-Based Systems, 2009, 22, 266-270.	4.0	35
46	Assisting Data Mining through Automated Planning. Lecture Notes in Computer Science, 2009, , 760-774.	1.0	1
47	Two Steps Reinforcement Learning in Continuous Reinforcement Learning Tasks. Lecture Notes in Computer Science, 2009, , 577-584.	1.0	Ο
48	Nearest prototype classification of noisy data. Artificial Intelligence Review, 2008, 30, 53-66.	9.7	4
49	Two steps reinforcement learning. International Journal of Intelligent Systems, 2008, 23, 213-245.	3.3	24
50	Local Feature Weighting in Nearest Prototype Classification. IEEE Transactions on Neural Networks, 2008, 19, 40-53.	4.8	33
51	Prototypes Based Relational Learning. Lecture Notes in Computer Science, 2008, , 130-143.	1.0	1
52	Roboskeleton: An architecture for coordinating robot soccer agents. Engineering Applications of Artificial Intelligence, 2006, 19, 179-188.	4.3	9
53	Probabilistic policy reuse in a reinforcement learning agent. , 2006, , .		124
54	Combining Macro-operators with Control Knowledge. Lecture Notes in Computer Science, 2006, , 229-243.	1.0	2

#	Article	IF	CITATIONS
55	A Reinforcement Learning Algorithm in Cooperative Multi-Robot Domains. Journal of Intelligent and Robotic Systems: Theory and Applications, 2005, 43, 161-174.	2.0	32
56	Learning Content Sequencing in an Educational Environment According to Student Needs. Lecture Notes in Computer Science, 2004, , 454-463.	1.0	5
57	Evolutionary Design of Nearest Prototype Classifiers. Journal of Heuristics, 2004, 10, 431-454.	1.1	57
58	Navigating through the RLATES Interface: A Web-Based Adaptive and Intelligent Educational System. Lecture Notes in Computer Science, 2003, , 175-184.	1.0	1
59	VQQL. Applying Vector Quantization to Reinforcement Learning. Lecture Notes in Computer Science, 2000, , 292-303.	1.0	11
60	Safe Exploration of State and Action Spaces in Reinforcement Learning. Journal of Artificial Intelligence Research, 0, 45, 515-564.	7.0	61
61	The IBaCoP Planning System: Instance-Based Configured Portfolios. Journal of Artificial Intelligence Research, 0, 56, 657-691.	7.0	9