Brigitte Tenhumberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9000857/publications.pdf

Version: 2024-02-01

64 papers

2,009 citations

331670 21 h-index 377865 34 g-index

64 all docs 64
docs citations

64 times ranked 2370 citing authors

#	Article	IF	CITATIONS
1	IMPROVING PRECISION AND REDUCING BIAS IN BIOLOGICAL SURVEYS: ESTIMATING FALSE-NEGATIVE ERROR RATES. , 2003, 13, 1790-1801.		633
2	Syrphids as natural enemies of cereal aphids in Germany: Aspects of their biology and efficacy in different years and regions. Agriculture, Ecosystems and Environment, 1995, 52, 39-43.	5.3	125
3	Linking Wild and Captive Populations to Maximize Species Persistence: Optimal Translocation Strategies. Conservation Biology, 2004, 18, 1304-1314.	4.7	92
4	Feeding and survival in parasitic wasps: sugar concentration and timing matter. Oikos, 2001, 95, 425-430.	2.7	89
5	DO HARVEST REFUGES BUFFER KANGAROOS AGAINST EVOLUTIONARY RESPONSES TO SELECTIVE HARVESTING?. Ecology, 2004, 85, 2003-2017.	3.2	76
6	Estimating Predatory Efficiency of Episyrphus balteatus (Diptera: Syrphidae) in Cereal Fields. Environmental Entomology, 1995, 24, 687-691.	1.4	51
7	Optimal time allocation in parasitic wasps searching for hosts and food. Oikos, 2006, 113, 121-131.	2.7	42
8	Model complexity affects transient population dynamics following a dispersal event: a case study with pea aphids. Ecology, 2009, 90, 1878-1890.	3.2	42
9	Estimating the frequency of <scp>Cry1F</scp> resistance in field populations of the European corn borer (Lepidoptera: Crambidae). Pest Management Science, 2014, 70, 725-733.	3.4	41
10	Timeâ€lagged effects of weather on plant demography: drought and <i>Astragalus scaphoides</i> Ecology, 2018, 99, 915-925.	3.2	39
11	Herbivoreâ€Mediated Ecological Costs of Reproduction Shape the Life History of an Iteroparous Plant. American Naturalist, 2008, 171, 141-149.	2.1	37
12	The Sweet Tooth of Adult Parasitoid Cotesia rubecula: Ignoring Hosts for Nectar?. Journal of Insect Behavior, 2004, 17, 459-476.	0.7	35
13	Submaximal Oviposition Rates in a Mymarid Parasitoid: Choosiness Should Not Be Ignored. Ecology, 1995, 76, 1990-1993.	3.2	33
14	Contributions of demography and dispersal parameters to the spatial spread of a stageâ€structured insect invasion. Ecological Applications, 2010, 20, 620-633.	3.8	33
15	Monte Carlo analysis of parameter uncertainty in matrix models for the weed <i>Cirsium vulgare</i> Journal of Applied Ecology, 2008, 45, 438-447.	4.0	32
16	Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals. Annals of Botany, 2020, 126, 971-979.	2.9	28
17	Global asymptotic stability of plant-seed bank models. Journal of Mathematical Biology, 2014, 69, 1-37.	1.9	27
18	Optimal patch-leaving behaviour: a case study using the parasitoid Cotesia rubecula. Journal of Animal Ecology, 2001, 70, 683-691.	2.8	26

#	Article	IF	Citations
19	Management recommendations based on matrix projection models: The importance of considering biological limits. Biological Conservation, 2008, 141, 517-523.	4.1	26
20	Global asymptotic stability of density dependent integral population projection models. Theoretical Population Biology, 2012, 81, 81-87.	1.1	26
21	Life-history decisions under predation risk: Importance of a game perspective. Evolutionary Ecology, 1998, 12, 701-715.	1.2	25
22	Composite random search strategies based on non-directional sensory cues. Ecological Complexity, 2015, 22, 126-138.	2.9	25
23	Effects of virus on plant fecundity and population dynamics. New Phytologist, 2014, 202, 1346-1356.	7.3	24
24	Feedback control systems analysis of density dependent population dynamics. Systems and Control Letters, 2012, 61, 309-315.	2.3	23
25	Disturbance Frequency and Vertical Distribution of Seeds Affect Long-Term Population Dynamics: A Mechanistic Seed Bank Model. American Naturalist, 2013, 182, 180-190.	2.1	21
26	Modeling effects of ecological factors on evolution of polygenic pesticide resistance. Journal of Theoretical Biology, 2018, 456, 224-232.	1.7	20
27	Identifying landscape scale patterns from individual scale processes. Ecological Modelling, 2006, 199, 442-450.	2.5	19
28	Native insect herbivory limits population growth rate of a non-native thistle. Oecologia, 2014, 175, 129-138.	2.0	18
29	Stochastic Variation in Food Availability Influences Weight and Age at Maturity. Journal of Theoretical Biology, 2000, 202, 257-272.	1.7	17
30	Integral projection models show exotic thistle is more limited than native thistle by ambient competition and herbivory. Ecosphere, 2015, 6, 1-18.	2.2	16
31	Choice of density-dependent seedling recruitment function affects predicted transient dynamics: a case study with Platte thistle. Theoretical Ecology, 2012, 5, 387-401.	1.0	15
32	Structured Population Dynamics: An Introduction to Integral Modeling. Mathematics Magazine, 2010, 83, 243-257.	0.1	15
33	Comparison of the wing polyphenic response of pea aphids (<i>Acyrthosiphon pisum</i>) to crowding and predator cues. Ecological Entomology, 2014, 39, 263-266.	2.2	14
34	Swapping space for time and unfair tests of ecological models. Austral Ecology, 2000, 25, 327-331.	1.5	13
35	The Effect of Resource Aggregation at Different Scales: Optimal Foraging Behavior ofCotesia rubecula. American Naturalist, 2001, 158, 505-518.	2.1	13
36	Modeling and Analysis of a Density-Dependent Stochastic Integral Projection Model for a Disturbance Specialist Plant and Its Seed Bank. Bulletin of Mathematical Biology, 2014, 76, 1809-1834.	1.9	13

#	Article	IF	CITATIONS
37	Modeling shattercane dynamics in herbicide-tolerant grain sorghum cropping systems. Ecological Modelling, 2017, 343, 131-141.	2.5	13
38	Parameterizing the growth-decline boundary for uncertain population projection models. Theoretical Population Biology, 2009, 75, 85-97.	1.1	12
39	Insect herbivory and propagule pressure influenceCirsium vulgareinvasiveness across the landscape. Ecology, 2012, 93, 1787-1794.	3.2	12
40	Influence of aphid honeydew on the foraging behaviour of <i>Hippodamia convergens</i> larvae. Ecological Entomology, 2012, 37, 184-192.	2.2	12
41	Integral control for population management. Journal of Mathematical Biology, 2015, 70, 1015-1063.	1.9	12
42	Indirect evidence of density-dependent population regulation in Aponomma hydrosauri (Acari:) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 54
43	Frequency-dependent population dynamics: Effect of sex ratio and mating system on the elasticity of population growth rate. Theoretical Population Biology, 2014, 97, 49-56.	1.1	11
44	Effects of temporal variation in temperature and density dependence on insect population dynamics. Ecosphere, 2016, 7, e01287.	2.2	11
45	Simple Adaptive Control for Positive Linear Systems with Applications to Pest Management. SIAM Journal on Applied Mathematics, 2016, 76, 238-275.	1.8	11
46	Management of invasive insect species using optimal control theory. Ecological Modelling, 2018, 381, 36-45.	2.5	11
47	Identifying mechanistic models of spatial behaviour using pattern-based modelling: An example from lizard home ranges. Ecological Modelling, 2007, 208, 307-316.	2.5	10
48	Contemporary sexual selection does not explain variation in male display traits among populations. Evolution; International Journal of Organic Evolution, 2019, 73, 1927-1940.	2.3	10
49	Modeling the evolution of herbicide resistance in weed species with a complex life cycle. Ecological Applications, 2022, 32, e02473.	3.8	8
50	Temporal Variation in Predation Risk May Explain Daily Rhythms of Foraging Behavior in an Orb-Weaving Spider. American Naturalist, 2018, 191, 74-87.	2.1	7
51	Towards understanding factors influencing the benefit of diversity in predator communities for prey suppression. Ecosphere, 2020, 11, e03271.	2.2	5
52	Response of population size to changing vital rates in random environments. Theoretical Ecology, 2013, 6, 21-29.	1.0	4
53	Larval Performance and Kill Rate of Convergent Ladybird Beetles, <i>Hippodamia convergens </i> , on Black Bean Aphids, <i>Aphis fabae </i> , and Pea Aphids, <i>Acyrthosiphon pisum </i> , Journal of Insect Science, 2013, 13, 1-10.	0.9	4
54	Variation in the local population dynamics of the short-livedOpuntia macrorhiza(Cactaceae). Ecology, 2015, 96, 800-807.	3.2	3

#	Article	IF	CITATIONS
55	Assessing the Influence of Temporal Autocorrelations on the Population Dynamics of a Disturbance Specialist Plant Population in a Random Environment. American Naturalist, 2017, 190, 570-583.	2.1	3
56	Presence of fruits decreases probability of retaining flowers in a sequentially flowering plant. AoB PLANTS, 2018, 10, ply033.	2.3	3
57	Creating an Interdisciplinary Research Course in Mathematical Biology. , 2013, , 133-138.		3
58	Population Dynamics of the Western Prickly Pear, Opuntia macrorhiza (Cactaceae). Southwestern Naturalist, 2011, 56, 147-153.	0.1	2
59	Southern Corn Rootworm (Coleoptera: Chrysomelidae) Adult Emergence and Population Growth Assessment After Selection With Vacuolar ATPase-A double-stranded RNA Over Multiple Generations. Journal of Economic Entomology, 2019, 112, 1354-1364.	1.8	2
60	Optimal resource allocation and prolonged dormancy strategies in herbaceous plants. Journal of Ecology, 2021, 109, 218-233.	4.0	2
61	An Interdisciplinary Research Course in Theoretical Ecology for Young Undergraduates. , 0, , 69-82.		1
62	Dynamic observers for unknown populations. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 3279.	0.9	1
63	Spectral properties of a non-compact operator in ecology. Journal of Mathematical Biology, 2021, 82, 50.	1.9	1
64	Herbicide Resistance Evolution in Johnsongrass. Bulletin of the Ecological Society of America, 2022, 103, .	0.2	0