Jie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9000567/publications.pdf Version: 2024-02-01

840119 940134 22 265 11 16 citations h-index g-index papers 22 22 22 216 all docs docs citations times ranked citing authors

ΙΓ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Extrusionâ€Based Additive Manufacturing Samples with Desirable Thermal Conductivities Prepared by Incorporating Hybrid Hexagonal Boron Nitride(hâ€BN) and Novel Process Strategy. Macromolecular Materials and Engineering, 2022, 307, .	1.7	6
2	Structure Evolution and Hoop-Reinforcing Mechanism of Bionic-Inspired Off-Axial Glass Fiber-Reinforced High-Density Polyethylene Pipes Fabricated via Rotating Co-extrusion. Industrial & Engineering Chemistry Research, 2021, 60, 10407-10418.	1.8	2
3	Investigating the Influence of Incorporation of Boron Nitride on the Kinetics of Isotactic Polypropylene Entanglement Recovery. Industrial & Engineering Chemistry Research, 2021, 60, 12901-12910.	1.8	5
4	Experimental characterization of 3D printed PP/h-BN thermally conductive composites with highly oriented h-BN and the effects of filler size. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106586.	3.8	27
5	Manipulating the Strength–Toughness Balance of Poly(<scp>l</scp> -lactide) (PLLA) via Introducing Ductile Poly(lµ-caprolactone) (PCL) and Strong Shear Flow. Industrial & Engineering Chemistry Research, 2020, 59, 1000-1009.	1.8	15
6	Unique Slow Crack Growth Behavior of Isotactic Polypropylene: The Role of Shear Layer-Spherulites Layer Alternated Structure. Polymers, 2020, 12, 2746.	2.0	1
7	Evolution of iPP/HDPE Morphology under Different Mold Temperatures via Multiflow Vibration Injection Molding: Thermal Field Simulation and Oriented Structures. Industrial & Engineering Chemistry Research, 2020, 59, 6741-6750.	1.8	10
8	Tailored crystalline structure and enhanced impact strength of isotactic polypropylene/high-density polyethylene blend by controlling the printing speed of fused filament fabrication. Journal of Materials Science, 2020, 55, 14058-14073.	1.7	20
9	The influence of hoop shear field on the structure and performances of glass fiber reinforced threeâ€layer polypropylene random copolymer pipe. Journal of Applied Polymer Science, 2019, 136, 46985.	1.3	10
10	The α-, β-, and γ-polymorphs of polypropylene–polyethylene random copolymer modified by two kinds of β-nucleating agent. Polymer Bulletin, 2019, 76, 865-881.	1.7	16
11	Remarkably Improved Impact Fracture Toughness of Isotactic Polypropylene via Combining the Effects of Shear Layer-Spherulites Layer Alternated Structure and Thermal Annealing. Industrial & Engineering Chemistry Research, 2019, 58, 15069-15078.	1.8	9
12	Preparation of Thermoplastic Polyurethane Parts Reinforced with in Situ Polylactic Acid Microfibers during Fused Deposition Modeling: The Influences of Deposition-Induced Effects. Industrial & Engineering Chemistry Research, 2019, 58, 21476-21484.	1.8	22
13	Effects of Phase Morphology on Mechanical Properties: Oriented/Unoriented PP Crystal Combination with Spherical/Microfibrillar PET Phase. Polymers, 2019, 11, 248.	2.0	18
14	Insight into shearâ€induced modification for improving processability of polymers: Effect of shear rate on the evolution of entanglement state. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 598-606.	2.4	15
15	Insight into Understanding the Influence of Blending Ratio on the Structure and Properties of High-Density Polyethylene/Polystyrene Microfibril Composites Prepared by Vibration Injection Molding. Industrial & Engineering Chemistry Research, 2019, 58, 1190-1199.	1.8	16
16	Effect of highâ€ŧemperature annealing on the microstructure and mechanical properties of polypropylene with shish kebab or spherulite structure. Journal of Applied Polymer Science, 2018, 135, 46465.	1.3	14
17	New Approach to Optimize Mechanical Properties of the Immiscible Polypropylene/Poly (Ethylene) Tj ETQq1 1	0.784314 rg 2.0	$_{10}^{gBT/Overloc}$
	Composite Contains Large Content of In Situ Microfibril. Prepared Directly by Injection Molding:		

18 Composite Contains Large Content of In Situ Microfibril, Prepared Directly by Injection Molding: Morphology and Property. Macromolecular Materials and Engineering, 2018, 303, 1800270.

1.7 11

JIE ZHANG

#	Article	IF	CITATIONS
19	Self-Reinforcement of Polypropylene Lid-Shaped Samples Induced by Increasing Shish-Kebab Content: Practical Application of Vibration Injection Technology. Industrial & Engineering Chemistry Research, 2018, 57, 8620-8629.	1.8	11
20	Tailored Crystalline Structure and Mechanical Properties of Isotactic Polypropylene/High Molecular Weight Polyethylene Blend. Industrial & Engineering Chemistry Research, 2017, 56, 8385-8392.	1.8	17
21	Insight into understanding the evolution of the epitaxy crystallization in isotactic polypropylene and polyethylene blends. Polymers for Advanced Technologies, 2017, 28, 1750-1758.	1.6	7
22	Investigating the disentanglement of long chain branched polypropylene under different shear fields. Journal of Applied Polymer Science, 0, , 51642.	1.3	3