Mitsuru Higa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9000228/publications.pdf Version: 2024-02-01

Μιτεμρίι Ηιςλ

#	Article	IF	CITATIONS
1	At study of ion permeation across a charged membrane in multicomponent ion systems as a function of membrane charge density. Journal of Membrane Science, 1990, 49, 145-169.	8.2	66
2	Effect of spacer geometry on membrane and solution compartment resistances in reverse electrodialysis. Journal of Membrane Science, 2019, 572, 271-280.	8.2	62
3	Sulfonated polyimides bearing benzimidazole groups for direct methanol fuel cell applications. Journal of Membrane Science, 2010, 351, 214-221.	8.2	37
4	Experimental and theoretical study of a forward osmosis hollow fiber membrane module with a cross-wound configuration. Journal of Membrane Science, 2016, 504, 10-19.	8.2	36
5	Experimental and simulation studies of two types of 5-inch scale hollow fiber membrane modules for pressure-retarded osmosis. Desalination, 2018, 447, 133-146.	8.2	35
6	Poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cells. Electrochimica Acta, 2010, 55, 1445-1449.	5.2	31
7	Power generation performance of a bench-scale reverse electrodialysis stack using wastewater discharged from sewage treatment and seawater reverse osmosis. Desalination, 2020, 491, 114449.	8.2	31
8	Transport properties of ions through temperature-responsive charged membranes prepared using poly(vinyl alcohol)/poly(-isopropylacrylamide)/poly(vinyl alcohol-co-2-acrylamido-2-methylpropane) Tj ETQq0 0 0	rg BsT 2∕Ove	rlo ek 10 Tf 50
9	Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly(vinyl alcohol-b-styrene sulfonic acid). Electrochimica Acta, 2015, 153, 83-89.	5.2	26
10	Design and Preparation of a Novel Temperature-Responsive Ionic Gel. 1. A Fast and Reversible Temperature Response in the Charge Density. Journal of Physical Chemistry B, 2004, 108, 16703-16707.	2.6	25
11	Electrodialytic properties of aromatic and aliphatic type hydrocarbon-based anion-exchange membranes with various anion-exchange groups. Polymer, 2014, 55, 3951-3960.	3.8	23
12	Cell performance of direct methanol alkaline fuel cell (DMAFC) using anion exchange membranes prepared from PVA-Based block copolymer. Journal of Membrane Science, 2020, 597, 117618.	8.2	23
13	Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Membranes, 2021, 11, 27.	3.0	23
14	Experimental study of a hollow fiber membrane module in pressure-retarded osmosis: Module performance comparison with volumetric-based power outputs. Desalination, 2017, 420, 45-53.	8.2	21
15	Preparation and characterization of anion-exchange membranes with a semi-interpenetrating network structure of poly(vinyl alcohol) and poly(allyl amine). Desalination, 2008, 233, 157-165.	8.2	20
16	Long-term evaluation of an air-cathode microbial fuel cell with an anion exchange membrane in a 226L wastewater treatment reactor. Environmental Research, 2022, 205, 112416.	7.5	20
17	Alkali attack on anion exchange membranes with PVC backing and binder: Effect on performance and correlation between them. Journal of Membrane Science, 2019, 573, 85-96.	8.2	19
18	Polyelectrolyte Composite Membranes Containing Electrospun Ion-Exchange Nanofibers: Effect of Nanofiber Surface Charges on Ionic Transport. Langmuir, 2018, 34, 13035-13040.	3.5	16

Mitsuru Higa

#	Article	IF	CITATIONS
19	Optimization of Pressure-Retarded Osmosis with Hollow-Fiber Membrane Modules by Numerical Simulation. Industrial & Engineering Chemistry Research, 2019, 58, 6687-6695.	3.7	12
20	Alkali Attack on Anion Exchange Membranes with PVC Backing and Binder: II Prediction of Electrical and Mechanical Performances from Simple Optical Analyses. Membranes, 2018, 8, 133.	3.0	11
21	Alkali Attack on Cation-Exchange Membranes with Polyvinyl Chloride Backing and Binder: Comparison with Anion-Exchange Membranes. Membranes, 2020, 10, 228.	3.0	9
22	Effect of DS Concentration on the PRO Performance Using a 5-Inch Scale Cellulose Triacetate-Based Hollow Fiber Membrane Module. Membranes, 2018, 8, 22.	3.0	8
23	Comparison of Pressure-Retarded Osmosis Performance between Pilot-Scale Cellulose Triacetate Hollow-Fiber and Polyamide Spiral-Wound Membrane Modules. Membranes, 2021, 11, 177.	3.0	6
24	Effect of Alkali Treatment on the Mechanical Properties of Anion-Exchange Membranes with a Poly(vinyl Chloride) Backing and Binder. Membranes, 2020, 10, 344.	3.0	5
25	Effect of Ion Selectivity on Current Production in Sewage Microbial Fuel Cell Separators. Membranes, 2022, 12, 183.	3.0	5
26	lon and water transport properties of cation exchange membranes prepared by heavy-ion-track grafting technique. Separation Science and Technology, 2020, 55, 2211-2216.	2.5	3
27	Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol-b-sodium) Tj ETQq1 1	0,784314 3.0	1 rgBT /Over
28	Characterization of hydrophilic hollow fiber membranes prepared from poly(vinyl alcohol). Desalination and Water Treatment, 2010, 17, 199-203.	1.0	2
29	Forward Osmosis Membrane as a Novel Water Treatment Technology. Membrane, 2012, 37, 224-229.	0.0	0
30	Trends and Prospects of Membrane Separation Processes using Ion–exchange Membranes. Membrane, 2020, 45, 145-150.	0.0	0