
Mark L Dell'acqua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8999443/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	cAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits. Neuron, 1997, 19, 185-196.	3.8	487
2	Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nature Cell Biology, 2003, 5, 1104-1110.	4.6	346
3	AKAP79/150 Anchoring of Calcineurin Controls Neuronal L-Type Ca2+ Channel Activity and Nuclear Signaling. Neuron, 2007, 55, 261-275.	3.8	303
4	Protein Kinase A Anchoring. Journal of Biological Chemistry, 1997, 272, 12881-12884.	1.6	250
5	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	7.1	237
6	Autonomous CaMKII Mediates Both LTP and LTD Using a Mechanism for Differential Substrate Site Selection. Cell Reports, 2014, 6, 431-437.	2.9	173
7	NMDA Receptor-Dependent LTD Requires Transient Synaptic Incorporation of Ca 2+ -Permeable AMPARs Mediated by AKAP150-Anchored PKA and Calcineurin. Neuron, 2016, 89, 1000-1015.	3.8	170
8	Regulation of A-Kinase Anchoring Protein 79/150–cAMP-Dependent Protein Kinase Postsynaptic Targeting by NMDA Receptor Activation of Calcineurin and Remodeling of Dendritic Actin. Journal of Neuroscience, 2002, 22, 7027-7044.	1.7	161
9	Regulation of neuronal PKA signaling through AKAP targeting dynamics. European Journal of Cell Biology, 2006, 85, 627-633.	1.6	157
10	AKAP Signaling Complexes in Regulation of Excitatory Synaptic Plasticity. Neuroscientist, 2011, 17, 321-336.	2.6	155
11	CaMKII "Autonomy" Is Required for Initiating But Not for Maintaining Neuronal Long-Term Information Storage. Journal of Neuroscience, 2010, 30, 8214-8220.	1.7	141
12	Mapping the Protein Phosphatase-2B Anchoring Site on AKAP79. Journal of Biological Chemistry, 2002, 277, 48796-48802.	1.6	131
13	AKAP-Anchored PKA Maintains Neuronal L-type Calcium Channel Activity and NFAT Transcriptional Signaling. Cell Reports, 2014, 7, 1577-1588.	2.9	128
14	cAMP-Dependent Protein Kinase Postsynaptic Localization Regulated by NMDA Receptor Activation through Translocation of an A-Kinase Anchoring Protein Scaffold Protein. Journal of Neuroscience, 2006, 26, 2391-2402.	1.7	127
15	Balanced interactions of calcineurin with AKAP79 regulate Ca2+–calcineurin–NFAT signaling. Nature Structural and Molecular Biology, 2012, 19, 337-345.	3.6	124
16	lmaging kinase–AKAP79–phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. Journal of Cell Biology, 2003, 160, 101-112.	2.3	119
17	AKAP150-Anchored Calcineurin Regulates Synaptic Plasticity by Limiting Synaptic Incorporation of Ca ²⁺ -Permeable AMPA Receptors. Journal of Neuroscience, 2012, 32, 15036-15052.	1.7	119
18	Coordination of Protein Phosphorylation and Dephosphorylation in Synaptic Plasticity. Journal of Biological Chemistry, 2015, 290, 28604-28612.	1.6	107

Mark L Dell'Acqua

#	Article	IF	CITATIONS
19	Palmitoylation of A-Kinase Anchoring Protein 79/150 Regulates Dendritic Endosomal Targeting and Synaptic Plasticity Mechanisms. Journal of Neuroscience, 2012, 32, 7119-7136.	1.7	105
20	Phospholipase C Is Required for Changes in Postsynaptic Structure and Function Associated with NMDA Receptor-Dependent Long-Term Depression. Journal of Neuroscience, 2007, 27, 3523-3534.	1.7	101
21	Organization of β-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. Journal of Cell Biology, 2007, 176, 521-533.	2.3	93
22	AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Remodeling in Hyperglycemia and Diabetes Mellitus. Circulation Research, 2014, 114, 607-615.	2.0	86
23	CaMKII Autonomy Is Substrate-dependent and Further Stimulated by Ca2+/Calmodulin. Journal of Biological Chemistry, 2010, 285, 17930-17937.	1.6	85
24	Association of an A-Kinase-anchoring Protein Signaling Scaffold with Cadherin Adhesion Molecules in Neurons and Epithelial Cells. Molecular Biology of the Cell, 2005, 16, 3574-3590.	0.9	81
25	Mutational Analysis of the A-Kinase Anchoring Protein (AKAP)-binding Site on RII. Journal of Biological Chemistry, 1996, 271, 29016-29022.	1.6	72
26	Anchored phosphatases modulate glucose homeostasis. EMBO Journal, 2012, 31, 3991-4004.	3.5	69
27	Regulation of Postsynaptic Structure and Function by an A-Kinase Anchoring Protein-Membrane-Associated Guanylate Kinase Scaffolding Complex. Journal of Neuroscience, 2009, 29, 7929-7943.	1.7	63
28	The Palmitoyl Acyltransferase DHHC2 Regulates Recycling Endosome Exocytosis and Synaptic Potentiation through Palmitoylation of AKAP79/150. Journal of Neuroscience, 2015, 35, 442-456.	1.7	61
29	STIM1 Ca 2+ Sensor Control of L-type Ca 2+ -Channel-Dependent Dendritic Spine Structural Plasticity and Nuclear Signaling. Cell Reports, 2017, 19, 321-334.	2.9	61
30	Phosphorylation-Dependent Regulation of Ca2+-Permeable AMPA Receptors During Hippocampal Synaptic Plasticity. Frontiers in Synaptic Neuroscience, 2020, 12, 8.	1.3	59
31	Synapse-to-Nucleus Communication through NFAT Is Mediated by L-type Ca2+ Channel Ca2+ Spike Propagation to the Soma. Cell Reports, 2019, 26, 3537-3550.e4.	2.9	57
32	Ca 2+ /Calcineurin-Dependent Inactivation of Neuronal L-Type Ca 2+ Channels Requires Priming by AKAP-Anchored Protein Kinase A. Cell Reports, 2014, 7, 1410-1416.	2.9	55
33	Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca ²⁺ -Permeable AMPA Receptors. Journal of Neuroscience, 2018, 38, 2863-2876.	1.7	54
34	Localized Calcineurin Confers Ca ²⁺ -Dependent Inactivation on Neuronal L-Type Ca ²⁺ Channels. Journal of Neuroscience, 2012, 32, 15328-15337.	1.7	52
35	AKAP150 Palmitoylation Regulates Synaptic Incorporation of Ca2+-Permeable AMPA Receptors to Control LTP. Cell Reports, 2018, 25, 974-987.e4.	2.9	51
36	AKAP79/150 Impacts Intrinsic Excitability of Hippocampal Neurons through Phospho-Regulation of A-type K ⁺ Channel Trafficking. Journal of Neuroscience, 2011, 31, 1323-1332.	1.7	47

#	Article	IF	CITATIONS
37	Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. , 2018, 185, 99-121.		47
38	Phosphorylation Regulates Removal of Synaptic N-Methyl-d-Aspartate Receptors after Withdrawal from Chronic Ethanol Exposure. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 720-729.	1.3	43
39	CaMKII regulates the depalmitoylation and synaptic removal of the scaffold protein AKAP79/150 to mediate structural long-term depression. Journal of Biological Chemistry, 2018, 293, 1551-1567.	1.6	43
40	Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits. Experimental Neurology, 2014, 256, 7-16.	2.0	41
41	Palmitoylation of caveolin-1 is regulated by the same DHHC acyltransferases that modify steroid hormone receptors. Journal of Biological Chemistry, 2018, 293, 15901-15911.	1.6	31
42	Selective Down-regulation of KV2.1 Function Contributes to Enhanced Arterial Tone during Diabetes. Journal of Biological Chemistry, 2015, 290, 7918-7929.	1.6	30
43	AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca ²⁺ channels. Molecular Biology of the Cell, 2019, 30, 1743-1756.	0.9	30
44	Aâ€kinase anchoring protein 150 expression in a specific subset of TRPV1―and Ca _V 1.2â€positive nociceptive rat dorsal root ganglion neurons. Journal of Comparative Neurology, 2012, 520, 81-99.	0.9	29
45	β-Amyloid disruption of LTP/LTD balance is mediated by AKAP150-anchored PKA and Calcineurin regulation of Ca2+-permeable AMPA receptors. Cell Reports, 2021, 37, 109786.	2.9	28
46	AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K+ currents in ventricular myocytes following myocardial infarction. Cellular Signalling, 2016, 28, 733-740.	1.7	23
47	Inhibition of the Motor Protein Eg5/Kinesin-5 in Amyloid <i>β</i> -Mediated Impairment of Hippocampal Long-Term Potentiation and Dendritic Spine Loss. Molecular Pharmacology, 2016, 89, 552-559.	1.0	22
48	Synaptic crosstalk conferred by a zone of differentially regulated Ca ²⁺ signaling in the dendritic shaft adjoining a potentiated spine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13611-13620.	3.3	16
49	Genetic knockout of the α7 nicotinic acetylcholine receptor gene alters hippocampal long-term potentiation in a background strain-dependent manner. Neuroscience Letters, 2016, 627, 1-6.	1.0	15
50	A-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors. Journal of Biological Chemistry, 2015, 290, 14107-14119.	1.6	14
51	Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice. PLoS ONE, 2015, 10, e0135113.	1.1	13
52	A-Kinase Anchoring Protein 150 (AKAP150) Promotes Cocaine Reinstatement by Increasing AMPA Receptor Transmission in the Accumbens Shell. Neuropsychopharmacology, 2018, 43, 1395-1404.	2.8	13
53	Observation and sequence assignment of a cis prolyl peptide bond in unliganded staphylococcal nuclease. Journal of the American Chemical Society, 1989, 111, 8317-8318.	6.6	12
54	[4] Isotopic labeling with hydrogen-2 and carbon-13 to compare conformations of proteins and mutants generated by site-directed mutagenesis, I. Methods in Enzymology, 1989, 177, 74-86.	0.4	10

Mark L Dell'Acqua

#	Article	IF	CITATIONS
55	AKAP79/150 coordinates leptin-induced PKA signaling to regulate KATP channel trafficking in pancreatic β-cells. Journal of Biological Chemistry, 2021, 296, 100442.	1.6	9
56	Subcellular Localization and Activity of the Mitogen-Activated Protein Kinase Kinase 7 (MKK7) <i>Ĵ³</i> Isoform are Regulated through Binding to the Phosphatase Calcineurin. Molecular Pharmacology, 2019, 95, 20-32.	1.0	6
57	Direct observation of multiple environments for the H.delta. but not the H.epsilon. proton of a histidine residue in Staphylococcal nuclease. Journal of the American Chemical Society, 1988, 110, 7908-7910.	6.6	2
58	[14] Isotopic labeling with hydrogen-2 and carbon-13 to compare conformations of proteins and mutants generated by site-directed mutagenesis, II. Methods in Enzymology, 1989, 177, 282-292.	0.4	2
59	Precision Mapping of Amyloid-Î ² Binding Reveals Perisynaptic Localization and Spatially Restricted Plasticity Deficits. ENeuro, 2021, , ENEURO.0416-21.2021.	0.9	2
60	Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. , 0, .		1
61	FRETting over postsynaptic PKC signaling. Nature Neuroscience, 2018, 21, 1021-1022.	7.1	0