Daniel Closa Autet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8998943/publications.pdf

Version: 2024-02-01

70 papers

2,777 citations

28 h-index 51 g-index

70 all docs

70 docs citations

70 times ranked

3269 citing authors

#	Article	IF	CITATIONS
1	Oxygen Free Radicals and the Systemic Inflammatory Response. IUBMB Life, 2004, 56, 185-191.	1.5	194
2	The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is mediated by activation of adenosine A2receptors. Hepatology, 1999, 29, 126-132.	3.6	190
3	Intratracheal Transplantation of Alveolar Type II Cells Reverses Bleomycin-induced Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1261-1268.	2.5	145
4	Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Critical Care Medicine, 2003, 31, 525-530.	0.4	134
5	Effect of Simultaneous Inhibition of TNF-?? Production and Xanthine Oxidase in Experimental Acute Pancreatitis. Annals of Surgery, 2004, 240, 108-116.	2.1	115
6	p8 Improves Pancreatic Response to Acute Pancreatitis by Enhancing the Expression of the Anti-inflammatory Protein Pancreatitis-associated Protein I. Journal of Biological Chemistry, 2004, 279, 7199-7207.	1.6	113
7	Hepatic preconditioning in rats is defined by a balance of adenosine and xanthine. Hepatology, 1998, 28, 768-773.	3.6	101
8	Fluid resuscitation with lactated Ringer's solution vs normal saline in acute pancreatitis: A triple-blind, randomized, controlled trial. United European Gastroenterology Journal, 2018, 6, 63-72.	1.6	98
9	Activation of Alveolar Macrophages in Lung Injury Associated With Experimental Acute Pancreatitis Is Mediated by the Liver. Annals of Surgery, 1999, 229, 230-236.	2.1	97
10	IL17 Functions through the Novel REG3β–JAK2–STAT3 Inflammatory Pathway to Promote the Transition from Chronic Pancreatitis to Pancreatic Cancer. Cancer Research, 2015, 75, 4852-4862.	0.4	92
11	Role of P-Selectin and ICAM-1 in Pancreatitis-Induced Lung Inflammation in Rats. Annals of Surgery, 1999, 230, 792.	2.1	79
12	Experimental acute pancreatitis in PAP/HIP knock-out mice. Gut, 2007, 56, 1091-1097.	6.1	77
13	Pancreatitis-Associated Protein I Suppresses NF-κB Activation through a JAK/STAT-Mediated Mechanism in Epithelial Cells. Journal of Immunology, 2006, 176, 3774-3779.	0.4	71
14	Involvement of exosomes in lung inflammation associated with experimental acute pancreatitis. Journal of Pathology, 2016, 240, 235-245.	2.1	59
15	Role of macrophages in the progression of acute pancreatitis. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2010, 1, 107.	0.6	58
16	Free Radical Enhancement Promotes Leucocyte Recruitment Through a PAF and LTB4 Dependent Mechanism. Free Radical Biology and Medicine, 1997, 22, 947-954.	1.3	56
17	Free radicals generated by xanthine oxidase mediate pancreatitis-associated organ failure. Digestive Diseases and Sciences, 1998, 43, 2405-2410.	1.1	55
18	Pancreatitis-associated protein: From a lectin to an anti-inflammatory cytokine. World Journal of Gastroenterology, 2007, 13, 170.	1.4	52

#	Article	IF	CITATIONS
19	Safety and Tolerability of Alveolar Type II Cell Transplantation in Idiopathic Pulmonary Fibrosis. Chest, 2016, 150, 533-543.	0.4	52
20	Reg3Î ² Deficiency Impairs Pancreatic Tumor Growth by Skewing Macrophage Polarization. Cancer Research, 2013, 73, 5682-5694.	0.4	51
21	Activation of lung macrophage subpopulations in experimental acute pancreatitis. Journal of Pathology, 2011, 223, 417-424.	2.1	50
22	Oleic acid chlorohydrin, a new early biomarker for the prediction of acute pancreatitis severity in humans. Annals of Intensive Care, 2018, 8, 1.	2.2	47
23	Down-Regulation of Endothelial Adhesion Molecules and Leukocyte Adhesion by Treatment with Superoxide Dismutase is Beneficial in Chronic Immune Experimental Colitis. Inflammatory Bowel Diseases, 2005, 11 , 872-882.	0.9	44
24	In vitro, but not in vivo, reversibility of peritoneal macrophages activation during experimental acute pancreatitis. BMC Immunology, 2009, 10, 42.	0.9	44
25	Release of inflammatory mediators by adipose tissue during acute pancreatitis. Journal of Pathology, 2010, 221, 175-182.	2.1	42
26	The role of P-selectin in experimental colitis as determined by antibody immunoblockade and genetically deficient mice. Journal of Leukocyte Biology, 2002, 72, 56-64.	1.5	42
27	Prospective randomized trial of the effect of octreotide on pancreatic juice output after pancreaticoduodenectomy in relation to histological diagnosis, duct size and leakage. Hpb, 2013, 15, 392-399.	0.1	39
28	H2O2 and PARS mediate lung P-selectin upregulation in acute pancreatitis. Free Radical Biology and Medicine, 2000, 28, 1286-1294.	1.3	29
29	P-selectin expression and Kupffer cell activation in rat acute pancreatitis. Digestive Diseases and Sciences, 2000, 45, 1535-1544.	1.1	28
30	Pancreatic and pulmonary mast cells activation during experimental acute pancreatitis. World Journal of Gastroenterology, 2010, 16, 3411.	1.4	28
31	Interaction of the stress protein p8 with Jab1 is required for Jab1-dependent p27 nuclear-to-cytoplasm translocation. Biochemical and Biophysical Research Communications, 2006, 339, 284-289.	1.0	26
32	The reg4 Gene, Amplified in the Early Stages of Pancreatic Cancer Development, Is a Promising Therapeutic Target. PLoS ONE, 2009, 4, e7495.	1.1	26
33	REG3 \hat{l}^2 modifies cell tumor function by impairing extracellular vesicle uptake. Scientific Reports, 2017, 7, 3143.	1.6	24
34	Peroxisome proliferator-activated receptor \hat{I}^3 agonist reduces the severity of post-ERCP pancreatitis in rats. World Journal of Gastroenterology, 2006, 12, 6458.	1.4	24
35	Involvement of extracellular vesicles in the macrophage-tumor cell communication in head and neck squamous cell carcinoma. PLoS ONE, 2019, 14, e0224710.	1.1	23
36	Serum Paraoxonase Undergoes Inhibition and Proteolysis During Experimental Acute Pancreatitis. Journal of Gastrointestinal Surgery, 2008, 12, 891-899.	0.9	22

3

#	Article	IF	CITATIONS
37	Fat Necrosis Generates Proinflammatory Halogenated Lipids During Acute Pancreatitis. Annals of Surgery, 2013, 257, 943-951.	2.1	22
38	Animal model of unilateral ventilator-induced lung injury. Intensive Care Medicine, 2005, 31, 487-490.	3.9	21
39	Lipids generated during acute pancreatitis increase inflammatory status of macrophages by interfering with their M2 polarization. Pancreatology, 2015, 15, 352-359.	0.5	21
40	Free radicals and acute pancreatitis: Much ado about … something. Free Radical Research, 2013, 47, 934-940.	1.5	19
41	Circulating TNF- \hat{l}_{\pm} and its soluble receptors during experimental acute pancreatitis. Cytokine, 2004, 25, 187-191.	1.4	18
42	Differences in the Inflammatory Response Induced by Acute Pancreatitis in Different White Adipose Tissue Sites in the Rat. PLoS ONE, 2012, 7, e41933.	1.1	18
43	Mobilization of xanthine oxidase from the gastrointestinal tract in acute pancreatitis. BMC Gastroenterology, 2004, 4, 1.	0.8	17
44	Protective Effects of Lazaroid U74389G on Intestinal Graft after Heterotopic Small Bowel Transplantation in Rats. Journal of Surgical Research, 1998, 75, 18-23.	0.8	16
45	Influence of portal blood on the development of systemic inflammation associated with experimental acute pancreatitis. Surgery, 2005, 137, 186-191.	1.0	16
46	Effect of cold exposure on organ temperatures in Wistar and Zuker fa/fa rat. Journal of Thermal Biology, 1992, 17, 83-88.	1.1	15
47	Soluble receptors released during acute pancreatitis interfere with the detection of tumor necrosis factor-α. Critical Care Medicine, 2001, 29, 1023-1026.	0.4	15
48	Inflammatory capacity of exosomes released in the early stages of acute pancreatitis predicts the severity of the disease. Journal of Pathology, 2022, 256, 83-92.	2.1	15
49	Gastric Mucosal Blood Flow Changes in Helicobacter pylori Infection and NSAID-Induced Gastric Injury. Helicobacter, 2003, 8, 124-131.	1.6	12
50	Factors released by the tumor far microenvironment are decisive for pancreatic adenocarcinoma development and progression. Oncolmmunology, 2017, 6, e1358840.	2.1	12
51	Differential effect of nitric oxide inhibition as a function of preservation period in pancreas transplantation. Digestive Diseases and Sciences, 1997, 42, 962-971.	1.1	11
52	New Roles for Corticosteroid Binding Globulin and Opposite Expression Profiles in Lung and Liver. PLoS ONE, 2016, 11, e0146497.	1.1	11
53	Pancreatitis Induces HSP72 in the Lung: Role of Neutrophils and Xanthine Oxidase. Biochemical and Biophysical Research Communications, 2000, 273, 1078-1083.	1.0	10
54	Absorption and effects of 3-(N-phenylamino)-1,2-propanediol esters in relation to toxic oil syndrome. Lipids, 2001, 36, 1125-1133.	0.7	9

#	Article	IF	CITATIONS
55	Oxygen in the alveolar air space mediates lung inflammation in acute pancreatitis. Free Radical Biology and Medicine, 2004, 37, 1640-1647.	1.3	9
56	One-lung overventilation does not induce inflammation in the normally ventilated contralateral lung. Respiratory Physiology and Neurobiology, 2008, 162, 100-102.	0.7	9
57	EFFECT OF A PLATELET-ACTIVATING FACTOR ANTAGONIST AND DESFERRIOXAMINE ADMINISTRATION ON EICOSANOID PRODUCTION IN RAT PANCREAS TRANSPLANTATION. Transplantation, 1994, 57, 12-16.	0.5	8
58	<scp>PAP</scp> / <scp>HIP</scp> Protein Is an Obesogenic Factor. Journal of Cellular Physiology, 2014, 229, 225-231.	2.0	6
59	Minocycline inhibits peritoneal macrophages but activates alveolar macrophages in acute pancreatitis. Journal of Physiology and Biochemistry, 2015, 71, 839-846.	1.3	6
60	REG3β Plays a Key Role in IL17RA Protumoral Effectâ€"Response. Cancer Research, 2016, 76, 2051-2051.	0.4	5
61	Polyethylene Glycol 35 (PEG35) Modulates Exosomal Uptake and Function. Polymers, 2020, 12, 3044.	2.0	5
62	Effect of peritoneal lavage and lymph ligature on systemic complications of experimental acute pancreatitis. Digestive Diseases and Sciences, 2000, 45, 909-914.	1.1	4
63	Role of Protease-Activated Receptor 2 in Lung Injury Development During Acute Pancreatitis in Rats. Pancreas, 2014, 43, 895-902.	0.5	4
64	Dietary Fat Patterns and Outcomes in Acute Pancreatitis in Spain. Frontiers in Medicine, 2020, 7, 126.	1.2	4
65	Targeting REG3 \hat{I}^2 limits pancreatic ductal adenocarcinoma progression through CTGF downregulation. Cancer Letters, 2021, 521, 64-70.	3.2	4
66	Hind-leg heat losses in cold-exposed rats. Journal of Thermal Biology, 1995, 20, 343-348.	1.1	3
67	NITRIC OXIDE AND ARACHIDONATE METABOLISM IN ISCHEMIA-REPERFUSION ASSOCIATED WITH PANCREAS TRANSPLANTATION. Transplantation, 1995, 59, 417-421.	0.5	3
68	Response to "Is the Reg3α (HIP/PAP) Protein Really an Obesogenic Factor?― Journal of Cellular Physiology, 2016, 231, 2-2.	2.0	2
69	Commentary on "Pancreatic ascites hemoglobin contributes to the systemic response in acute pancreatitis― Free Radical Biology and Medicine, 2015, 81, 156-157.	1.3	0
70	Pancreatic cancer, stroma, and exosomes. Journal of Physiology and Biochemistry, 0, , .	1.3	0