
Diego De Stefani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8998734/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature, 2011, 476, 336-340.	13.7	1,622
2	Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology, 2012, 13, 566-578.	16.1	1,369
3	Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. Journal of Cell Biology, 2006, 175, 901-911.	2.3	1,107
4	Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology, 2015, 17, 288-299.	4.6	1,006
5	MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity. Molecular Cell, 2014, 53, 726-737.	4.5	441
6	The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO Journal, 2013, 32, 2362-2376.	3.5	408
7	Ca2+ transfer from the ER to mitochondria: When, how and why. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1342-1351.	0.5	396
8	Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum–mitochondria tether. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11249-11254.	3.3	395
9	Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annual Review of Biochemistry, 2016, 85, 161-192.	5.0	348
10	Structural and functional link between the mitochondrial network and the endoplasmic reticulum. International Journal of Biochemistry and Cell Biology, 2009, 41, 1817-1827.	1.2	337
11	Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nature Genetics, 2014, 46, 188-193.	9.4	311
12	DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019, 10, 2576.	5.8	274
13	VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death and Differentiation, 2012, 19, 267-273.	5.0	255
14	Mitochondrial Ca ²⁺ uptake contributes to buffering cytoplasmic Ca ²⁺ peaks in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12986-12991.	3.3	192
15	Identification of an ATP-sensitive potassium channel in mitochondria. Nature, 2019, 572, 609-613.	13.7	178
16	Mitochondrial dynamics and Ca2+ signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 442-449.	1.9	170
17	The Mitochondrial Calcium Uniporter Controls Skeletal Muscle Trophism InÂVivo. Cell Reports, 2015, 10, 1269-1279.	2.9	170
18	Structure and function of the mitochondrial calcium uniporter complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2006-2011.	1.9	154

DIEGO DE STEFANI

#	Article	IF	CITATIONS
19	The m -AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Molecular Cell, 2016, 64, 148-162.	4.5	153
20	MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death and Differentiation, 2019, 26, 179-195.	5.0	145
21	The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Physiological Roles. Journal of Biological Chemistry, 2013, 288, 10750-10758.	1.6	131
22	Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Molecular and Cellular Endocrinology, 2014, 383, 137-146.	1.6	96
23	Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3247-3256.	1.8	88
24	MFN2 mutations in Charcot–Marie–Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Human Molecular Genetics, 2019, 28, 1782-1800.	1.4	72
25	Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9006-E9015.	3.3	70
26	Polyphenols as Caloric Restriction Mimetics Regulating Mitochondrial Biogenesis and Mitophagy. Trends in Endocrinology and Metabolism, 2020, 31, 536-550.	3.1	68
27	The MCU complex in cell death. Cell Calcium, 2018, 69, 73-80.	1.1	62
28	Loss-of-Function Mutation of the <i>GPR40</i> Gene Associates with Abnormal Stimulated Insulin Secretion by Acting on Intracellular Calcium Mobilization. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3541-3550.	1.8	61
29	The mitochondrial Ca2+ uniporter. Cell Calcium, 2012, 52, 16-21.	1.1	61
30	Mitochondrial Calcium Handling in Physiology and Disease. Advances in Experimental Medicine and Biology, 2017, 982, 25-47.	0.8	61
31	LETM1-Mediated K+ and Na+ Homeostasis Regulates Mitochondrial Ca2+ Efflux. Frontiers in Physiology, 2017, 8, 839.	1.3	56
32	A High-Throughput Screening Identifies MICU1 Targeting Compounds. Cell Reports, 2020, 30, 2321-2331.e6.	2.9	54
33	Loss of mitochondrial calcium uniporter rewires skeletal muscle metabolism and substrate preference. Cell Death and Differentiation, 2019, 26, 362-381.	5.0	53
34	Reduced mitochondrial Ca2+ transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase. Cell Death and Differentiation, 2016, 23, 231-241.	5.0	51
35	Mitochondrial Calcium Increase Induced by RyR1 and IP3R Channel Activation After Membrane Depolarization Regulates Skeletal Muscle Metabolism. Frontiers in Physiology, 2018, 9, 791.	1.3	51
36	Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Human Molecular Genetics, 2012, 21, 3858-3870.	1.4	49

DIEGO DE STEFANI

#	Article	IF	CITATIONS
37	Mitochondrial ion channels as targets for cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 7102-7114.	1.6	48
38	Overexpression of Mitochondrial Calcium Uniporter Causes Neuronal Death. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	1.9	42
39	Altered MICOS Morphology and Mitochondrial Ion Homeostasis Contribute to Poly(GR) Toxicity Associated with C9-ALS/FTD. Cell Reports, 2020, 32, 107989.	2.9	32
40	Mitochondrial K+ channels and their implications for disease mechanisms. , 2021, 227, 107874.		29
41	Molecular control of mitochondrial calcium uptake. Biochemical and Biophysical Research Communications, 2014, 449, 373-376.	1.0	27
42	Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Reports, 2021, 37, 110133.	2.9	27
43	Reply to Filadi et al.: Does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria?. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2268-E2269.	3.3	21
44	Endoplasmic Reticulum/Mitochondria Calcium Cross-Talk. Novartis Foundation Symposium, 0, , 122-139.	1.2	21
45	Loss of EMILIN-1 Enhances Arteriolar Myogenic Tone Through TGF-Î ² (Transforming Growth) Tj ETQq1 1 0.7843 Hypertension in Mice and Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2484-2497.	14 rgBT /O 1.1	verlock 10 Tf 19
46	Measuring Baseline Ca2+ Levels in Subcellular Compartments Using Genetically Engineered Fluorescent Indicators. Methods in Enzymology, 2014, 543, 47-72.	0.4	17
47	A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biology, 2020, 37, 101676.	3.9	17
48	Biosensors for detection of calcium. Methods in Cell Biology, 2020, 155, 337-368.	0.5	12
49	Modulation of TRPV-1 by prostaglandin-E2 and bradykinin changes cough sensitivity and autonomic regulation of cardiac rhythm in healthy subjects. Scientific Reports, 2020, 10, 15163.	1.6	6
50	Monitoring calcium handling by the plant endoplasmic reticulum with a low a ²⁺ â€affinity targeted aequorin reporter. Plant Journal, 2022, 109, 1014-1027.	2.8	5
51	A Novel Loss of Function Melanocortin-4-Receptor Mutation (MC4R-F313Sfs*29) in Morbid Obesity. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 736-749.	1.8	4
52	Breast Tissue Engineering. Plastic and Reconstructive Surgery, 2015, 136, 35.	0.7	3
53	Mitochondria, calcium signaling and cell death by apoptosis and autophagy. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 4.	0.5	2
54	Identification of an ATP-Sensitive Potassium Channel in the Inner Mitochondrial Membrane. Biophysical Journal, 2020, 118, 1a.	0.2	2

DIEGO DE STEFANI

#	Article	IF	CITATIONS
55	Electrophysiological Characterization of the Activity and Regulation of the Mitochondrial Calcium Uniporter. Biophysical Journal, 2014, 106, 760a.	0.2	1
56	Novel Players in the Control of Mitochondrial Ion Homeostasis. Biophysical Journal, 2016, 110, 119a.	0.2	1
57	Electrophysiological characterization of an ATP-sensitive mitochondrial potassium channel. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e62-e63.	0.5	0
58	Electrophysiological Characterization of two Novel Ion Channels of Mitochondria. Biophysical Journal, 2016, 110, 609a.	0.2	0
59	Molecular Players of Mitochondrial Calcium Signaling: Similarities and Different Aspects in Various Organisms. Biological and Medical Physics Series, 2017, , 41-65.	0.3	Ο
60	Mitochondria in Cell Life and Death. , 2007, , 145-158.		0