Cheng-Jun Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8998711/publications.pdf

Version: 2024-02-01

279701 289141 1,661 45 23 40 citations h-index g-index papers 45 45 45 1745 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. Journal of Alloys and Compounds, 2020, 820, 153194.	2.8	200
2	Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Composites Part B: Engineering, 2021, 207, 108562.	5.9	177
3	Combustion synthesis of porous Pt-functionalized SnO ₂ sheets for isopropanol gas detection with a significant enhancement in response. Journal of Materials Chemistry A, 2014, 2, 20089-20095.	5.2	106
4	Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from Jackfruit peel. Applied Surface Science, 2018, 447, 261-268.	3.1	89
5	Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties. RSC Advances, 2019, 9, 9126-9135.	1.7	73
6	Tuning the microwave absorption capacity of TiP2O7 by composited with biomass carbon. Applied Surface Science, 2020, 515, 145974.	3.1	59
7	Cu ₂ O templating strategy for the synthesis of octahedral Cu ₂ O@Mn(OH) ₂ coreâ ϵ "shell hierarchical structures with a superior performance supercapacitor. Journal of Materials Chemistry A, 2018, 6, 13668-13675.	5.2	56
8	ZnO-Decorated In/Ga Oxide Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26161-26169.	4.0	54
9	Porous NiO nanosheets self-grown on alumina tube using a novel flash synthesis and their gas sensing properties. RSC Advances, 2015, 5, 4880-4885.	1.7	52
10	Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. Journal of Alloys and Compounds, 2019, 803, 1119-1126.	2.8	51
11	Monodisperse ZnFe 2 O 4 nanospheres synthesized by a nonaqueous route for a highly slective low-ppm-level toluene gas sensor. Sensors and Actuators B: Chemical, 2017, 239, 1231-1236.	4.0	50
12	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	0.7	49
13	Binder-free NiO@MnO 2 core-shell electrode: Rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO 2 shell. Electrochimica Acta, 2016, 189, 83-92.	2.6	47
14	Self-grown MnO 2 nanosheets on carbon fiber paper as high-performance supercapacitors electrodes. Electrochimica Acta, 2016, 217, 16-23.	2.6	43
15	Hydrothermal growth of ZnO nanorods on Zn substrates and their application in degradation of azo dyes under ambient conditions. CrystEngComm, 2014, 16, 7761-7770.	1.3	42
16	Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects. Journal of Alloys and Compounds, 2022, 890, 161887.	2.8	42
17	MOFs-derived NiFe2O4 fusiformis with highly selective response to xylene. Journal of Alloys and Compounds, 2019, 784, 102-110.	2.8	40
18	Carbon spheres@MnO2 core-shell nanocomposites with enhanced dielectric properties for electromagnetic shielding. Scientific Reports, 2017, 7, 15841.	1.6	38

#	Article	IF	Citations
19	MOF-on-MOF nanoarchitecturing of Fe2O3@ZnFe2O4 radial-heterospindles towards multifaceted superiorities for acetone detection. Chemical Engineering Journal, 2022, 442, 136094.	6.6	31
20	Highly Sensitive and Selective Toluene Sensor of Bimetallic Ni/Fe-MOFs Derived Porous NiFe ₂ O ₄ Nanorods. Industrial & Engineering Chemistry Research, 2019, 58, 9450-9457.	1.8	27
21	Hierarchical flower-like NiFe2O4 with core–shell structure for excellent toluene detection. Rare Metals, 2021, 40, 1578-1587.	3.6	27
22	Butane detection: W-doped TiO ₂ nanoparticles for a butane gas sensor with high sensitivity and fast response/recovery. RSC Advances, 2015, 5, 96539-96546.	1.7	26
23	Preparation and electromagnetic shielding effectiveness of cobalt ferrite nanoparticles/carbon nanotubes composites. Nanomaterials and Nanotechnology, 2019, 9, 184798041983782.	1.2	26
24	MOFs-Derived Porous NiFe2O4 Nano-Octahedrons with Hollow Interiors for an Excellent Toluene Gas Sensor. Nanomaterials, 2019, 9, 1059.	1.9	25
25	Nonaqueous synthesis of Pd-functionalized SnO2/In2O3 nanocomposites for excellent butane sensing properties. Sensors and Actuators B: Chemical, 2018, 257, 419-426.	4.0	21
26	Facile synthesis of core–shell carbon nanotubes@MnOOH nanocomposites with remarkable dielectric loss and electromagnetic shielding properties. RSC Advances, 2016, 6, 90002-90009.	1.7	20
27	Interface engineering of N-doped Ni3S2/CoS2 heterostructures as efficient bifunctional catalysts for overall water splitting. Journal of Electroanalytical Chemistry, 2021, 895, 115516.	1.9	20
28	Synthesis of core-shell carbon sphere@nickel oxide composites and their application for supercapacitors. Ionics, 2018, 24, 513-521.	1.2	19
29	Nanoparticles Assembled CdIn2O4 Spheres with High Sensing Properties towards n-Butanol. Nanomaterials, 2019, 9, 1714.	1.9	17
30	Synthesis of tin-glycerate and it conversion into SnO2 spheres for highly sensitive low-ppm-level acetone detection. Journal of Materials Science: Materials in Electronics, 2020, 31, 16539-16547.	1.1	15
31	Facile synthesis of CuO micro-sheets over Cu foil in oxalic acid solution and their sensing properties towards n-butanol. Journal of Materials Chemistry C, 2016, 4, 985-990.	2.7	14
32	Direct growth of MnCO3 on Ni foil for a highly sensitive nonenzymatic glucose sensor. Journal of Alloys and Compounds, 2018, 762, 216-221.	2.8	14
33	Ni Doping in MnO ₂ /MXene (Ti ₃ C ₂ T _{<i>x</i><}) Composites to Modulate the Oxygen Vacancies for Boosting Microwave Absorption. ACS Applied Electronic Materials, 2022, 4, 3694-3706.	2.0	13
34	Ternary MXene/MnO2/Ni composites for excellent electromagnetic absorption with tunable effective absorption bandwidth. Journal of Alloys and Compounds, 2022, 911, 165122.	2.8	12
35	In situ fabrication of Co(OH)2 by hydrothermal treating Co foil in MOH (M = H, Li, Na, K) for non-enzymatic glucose detection. Journal of Alloys and Compounds, 2019, 781, 1033-1039.	2.8	11
36	Soft-template synthesis of mesoporous NiFe2O4 for highly sensitive acetone detection. Journal of Materials Science: Materials in Electronics, 2020, 31, 6000-6007.	1.1	10

#	Article	IF	CITATIONS
37	Surfactant-mediated synthesis of ZnCo2O4 powders as a high-performance anode material for Li-ion batteries. Ionics, 2015, 21, 623-628.	1.2	9
38	Combustion synthesized hierarchically porous Mn ₃ O ₄ for catalytic degradation of methyl orange. Canadian Journal of Chemical Engineering, 2017, 95, 643-647.	0.9	6
39	A nickel foam modified with electrodeposited cobalt and phosphor for amperometric determination of dopamine. Mikrochimica Acta, 2019, 186, 602.	2.5	6
40	NiO nanosheets on pine pollen-derived porous carbon: construction of interface to enhance microwave absorption. Journal of Materials Science: Materials in Electronics, 2020, , 1.	1.1	6
41	In situ fabrication of Ni(OH)2 nanoflakes/K-Ti-O nanowires on NiTi foil for high performance non-enzymatic hydrogen peroxide sensing. Journal of Electroanalytical Chemistry, 2019, 842, 107-114.	1.9	5
42	SnO2 quantum dots with rapid butane detection at lower ppm-level. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	4
43	Ru-functionalized Ni-doped dual phases of $\hat{l}\pm/\hat{l}^3$ -Fe2O3 nanosheets for an optimized acetone detection. Journal of Nanostructure in Chemistry, 2023, 13, 577-589.	5.3	4
44	1D Zn2GeO4 rods supported on Ni foam for high performance non-enzymatic hydrogen peroxide sensor. Surfaces and Interfaces, 2021, 25, 101295.	1.5	3
45	In situ growth novel cubic copper hydroxyl phosphate and its utilization as a highly sensitive hydrogen peroxide amperometric sensor. Materials Today Communications, 2020, 24, 101212.	0.9	2