Hao Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8998640/hao-li-publications-by-year.pdf

Version: 2024-04-16

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52	2,607	31	51
papers	citations	h-index	g-index
52 ext. papers	3,198 ext. citations	8.7 avg, IF	5.05 L-index

#	Paper	IF	Citations
52	Novel N, F co-doped carbon dots to detect sulfide and cadmium ions with high selectivity and sensitivity based on a flurn-off-onlimechanism. <i>Dyes and Pigments</i> , 2022 , 203, 110379	4.6	1
51	Novel fluorescent probes based on nitrogenBulfur co-doped carbon dots for chromium ion detection. <i>New Journal of Chemistry</i> , 2021 , 45, 4828-4834	3.6	2
50	Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process. <i>Sensors and Actuators B: Chemical</i> , 2020 , 311, 127891	8.5	10
49	Biotoxicity of degradable carbon dots towards microalgae Chlorella vulgaris. <i>Environmental Science:</i> Nano, 2019 , 6, 3316-3323	7.1	15
48	Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. <i>Nano Research</i> , 2019 , 12, 1585-1593	10	42
47	Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for High-Performance Antibiofilm Formation and Anticorrosion Coating Design. <i>Small</i> , 2019 , 15, e1900007	11	29
46	The design of room-temperature-phosphorescent carbon dots and their application as a security ink. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10605-10612	7.1	51
45	Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. <i>Nano Research</i> , 2019 , 12, 3075-3084	10	35
44	Carbon dots promote the growth and photosynthesis of mung bean sprouts. <i>Carbon</i> , 2018 , 136, 94-102	10.4	107
43	Chiral evolution of carbon dots and the tuning of laccase activity. <i>Nanoscale</i> , 2018 , 10, 2333-2340	7.7	37
42	CoO and g-C3N4 complement each other for highly efficient overall water splitting under visible light. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 412-420	21.8	125
41	Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 26936-26946	9.5	143
40	Carbon Dots Enhance the Nitrogen Fixation Activity of Azotobacter Chroococcum. <i>ACS Applied Materials & Materials </i>	9.5	30
39	Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. Journal of Materials Chemistry B, 2018 , 6, 5708-5717	7.3	20
38	Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance ACS Applied Bio Materials, 2018, 1, 663-672	4.1	85
37	One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. <i>Nanoscale</i> , 2018 , 10, 12734-12742	7.7	82
36	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. <i>ACS Catalysis</i> , 2017 , 7, 1637-1645	13.1	50

(2015-2017)

35	Achieving electroreduction of CO2 to CH3OH with high selectivity using a pyritelickel sulfide nanocomposite. <i>RSC Advances</i> , 2017 , 7, 1376-1381	3.7	41
34	N,S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3293-3299	7.3	83
33	Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. <i>Carbon</i> , 2017 , 120, 95-102	10.4	43
32	Pyridine derivative-induced fluorescence in multifunctional modified carbon dots and their application in thermometers. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3964-3969	7.3	15
31	Simultaneous enzymatic activity modulation and rapid determination of enzyme kinetics by highly crystalline graphite dots. <i>Nanoscale</i> , 2017 , 9, 8410-8417	7.7	10
30	Carbon Dots as Fillers Inducing Healing/Self-Healing and Anticorrosion Properties in Polymers. <i>Advanced Materials</i> , 2017 , 29, 1701399	24	104
29	Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. <i>Applied Catalysis B: Environmental</i> , 2017 , 216, 114-121	21.8	161
28	High-bright fluorescent carbon dot as versatile sensing platform. <i>Talanta</i> , 2017 , 174, 265-273	6.2	29
27	New Insight of Water-Splitting Photocatalyst: HO-Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons. <i>ACS Applied Materials & Deactivation in Sub-micrometer CoO Octahedrons</i> .	58 3 -20!	5939
26	Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. <i>ACS Nano</i> , 2017 , 11, 9500-9513	16.7	59
25	A CoO-CDots-CN three component electrocatalyst design concept for efficient and tunable CO reduction to syngas. <i>Nature Communications</i> , 2017 , 8, 1828	17.4	102
24	Oxygen Containing Functional Groups Dominate the Electrochemiluminescence of Pristine Carbon Dots. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27546-27554	3.8	21
23	Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2017 , 219, 36-44	21.8	73
22	Facile fabrication of a CoO/g-C3N4 pl heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. <i>Catalysis Science and Technology</i> , 2017 , 7, 3325	5-3737	150
21	Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 6008-6015	7.3	35
20	A critical study of the generality of the two step two electron pathway for water splitting by application of a C3N4/MnO2 photocatalyst. <i>Nanoscale</i> , 2016 , 8, 11956-61	7.7	45
19	Concentrations dominated membrane permeability variation by fullerol nanoparticles on a single living HeLa cell. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 5755-5760	7.3	
18	Luminescent Coordination Polymers for Highly Sensitive Detection of Nitrobenzene. <i>Crystal Growth and Design</i> , 2015 , 15, 4355-4362	3.5	23

17	A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine. <i>Nanoscale</i> , 2015 , 7, 12068-75	7.7	26
16	Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. <i>Carbon</i> , 2015 , 91, 66-75	10.4	122
15	Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light. <i>ACS Applied Materials & Dot Mat</i>	9.5	79
14	Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. <i>Mikrochimica Acta</i> , 2015 , 182, 2443-2450	5.8	38
13	Visible-Light-Induced Effects of Au Nanoparticle on Laccase Catalytic Activity. <i>ACS Applied Materials & Acs Applied Materials</i> 8. **Interfaces**, 2015 **, 7, 20937-44	9.5	27
12	Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer. <i>ACS Applied Materials</i> & Samp; Interfaces, 2015 , 7, 27324-30	9.5	95
11	Carbon dots from PEG for highly sensitive detection of levodopa. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2378-2387	7.3	41
10	Size-dependent and real-time effect of SiO nanoparticles on a single living HeLa Cell's membrane permeability. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1198-1203	7.3	7
9	Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. <i>RSC Advances</i> , 2014 , 4, 46437-46443	3.7	30
8	One-step catalase controllable degradation of CN for N-doped carbon dot green fabrication and their bioimaging applications. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 5768-5774	7.3	51
7	Carbon dots for photoswitching enzyme catalytic activity. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 56	52 7 5 <u>9</u> 658	3 28
6	Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. <i>Nanoscale</i> , 2014 , 6, 5116-20	7.7	55
5	Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7964-7970	7.3	37
4	High-bright fluorescent carbon dots and their application in selective nucleoli staining. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 5077-5082	7.3	37
3	Nonporous homochiral copper-based coordination polymers for enantioselective recognition and electrocatalysis. <i>Inorganic Chemistry Communication</i> , 2014 , 40, 31-34	3.1	8
2	Homochiral metal®rganic porous materials for enantioselective recognition and electrocatalysis. CrystEngComm, 2013, 15, 3288	3.3	13
1	A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. <i>Dalton Transactions</i> , 2013 , 42, 9423-7	4.3	16