
Hao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8998640/publications.pdf

Version: 2024-02-01

HAOLI

#	Article	IF	CITATIONS
1	Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS Applied Materials & Interfaces, 2018, 10, 26936-26946.	8.0	246
2	Facile fabrication of a CoO/g-C ₃ N ₄ p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catalysis Science and Technology, 2017, 7, 3325-3331.	4.1	224
3	Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B: Environmental, 2017, 216, 114-121.	20.2	217
4	Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 2018, 136, 94-102.	10.3	182
5	CoO and g-C3N4 complement each other for highly efficient overall water splitting under visible light. Applied Catalysis B: Environmental, 2018, 226, 412-420.	20.2	176
6	Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon, 2015, 91, 66-75.	10.3	161
7	Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance. ACS Applied Bio Materials, 2018, 1, 663-672.	4.6	143
8	Carbon Dots as Fillers Inducing Healing/Selfâ€Healing and Anticorrosion Properties in Polymers. Advanced Materials, 2017, 29, 1701399.	21.0	142
9	A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nature Communications, 2017, 8, 1828.	12.8	140
10	One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 2018, 10, 12734-12742.	5.6	128
11	Fluorescent N-Doped Carbon Dots as <i>in Vitro</i> and <i>in Vivo</i> Nanothermometer. ACS Applied Materials & Interfaces, 2015, 7, 27324-27330.	8.0	122
12	N,S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. Journal of Materials Chemistry B, 2017, 5, 3293-3299.	5.8	117
13	Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 219, 36-44.	20.2	96
14	Tuning Laccase Catalytic Activity with Phosphate Functionalized Carbon Dots by Visible Light. ACS Applied Materials & Interfaces, 2015, 7, 10004-10012.	8.0	95
15	The design of room-temperature-phosphorescent carbon dots and their application as a security ink. Journal of Materials Chemistry C, 2019, 7, 10605-10612.	5.5	88
16	Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS Nano, 2017, 11, 9500-9513.	14.6	79
17	Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Research, 2019, 12, 1585-1593.	10.4	73
18	Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Research, 2019, 12, 3075-3084.	10.4	73

Hao Li

#	Article	IF	CITATIONS
19	Chiral evolution of carbon dots and the tuning of laccase activity. Nanoscale, 2018, 10, 2333-2340.	5.6	68
20	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	11.2	66
21	Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon, 2017, 120, 95-102.	10.3	65
22	Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale, 2014, 6, 5116.	5.6	61
23	Achieving electroreduction of CO ₂ to CH ₃ OH with high selectivity using a pyrite–nickel sulfide nanocomposite. RSC Advances, 2017, 7, 1376-1381.	3.6	60
24	Carbon Dots Enhance the Nitrogen Fixation Activity of Azotobacter Chroococcum. ACS Applied Materials & Interfaces, 2018, 10, 16308-16314.	8.0	57
25	A critical study of the generality of the two step two electron pathway for water splitting by application of a C ₃ N ₄ /MnO ₂ photocatalyst. Nanoscale, 2016, 8, 11956-11961.	5.6	56
26	Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. Journal of Materials Chemistry B, 2017, 5, 6008-6015.	5.8	56
27	Convenient and sensitive detection of norfloxacin with fluorescent carbon dots. Journal of Materials Chemistry B, 2014, 2, 7964-7970.	5.8	55
28	One-step catalase controllable degradation of C ₃ N ₄ for N-doped carbon dot green fabrication and their bioimaging applications. Journal of Materials Chemistry B, 2014, 2, 5768.	5.8	54
29	Carbon dots from PEG for highly sensitive detection of levodopa. Journal of Materials Chemistry B, 2015, 3, 2378-2387.	5.8	52
30	New Insight of Water-Splitting Photocatalyst: H ₂ O ₂ -Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons. ACS Applied Materials & Interfaces, 2017, 9, 20585-20593.	8.0	51
31	Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for Highâ€Performance Antibiofilm Formation and Anticorrosion Coating Design. Small, 2019, 15, e1900007.	10.0	46
32	High-bright fluorescent carbon dots and their application in selective nucleoli staining. Journal of Materials Chemistry B, 2014, 2, 5077.	5.8	45
33	Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Mikrochimica Acta, 2015, 182, 2443-2450.	5.0	45
34	Highly sensitive, stable, and precise detection of dopamine with carbon dots/tyrosinase hybrid as fluorescent probe. RSC Advances, 2014, 4, 46437-46443.	3.6	38
35	Visible-Light-Induced Effects of Au Nanoparticle on Laccase Catalytic Activity. ACS Applied Materials & Interfaces, 2015, 7, 20937-20944.	8.0	38
36	High-bright fluorescent carbon dot as versatile sensing platform. Talanta, 2017, 174, 265-273.	5.5	35

Hao Li

#	Article	IF	CITATIONS
37	Carbon dots for photoswitching enzyme catalytic activity. Journal of Materials Chemistry B, 2014, 2, 5652.	5.8	34
38	Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. Journal of Materials Chemistry B, 2018, 6, 5708-5717.	5.8	32
39	Oxygen Containing Functional Groups Dominate the Electrochemiluminescence of Pristine Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 27546-27554.	3.1	31
40	A practical and highly sensitive C ₃ N ₄ -TYR fluorescent probe for convenient detection of dopamine. Nanoscale, 2015, 7, 12068-12075.	5.6	30
41	Biotoxicity of degradable carbon dots towards microalgae <i>Chlorella vulgaris</i> . Environmental Science: Nano, 2019, 6, 3316-3323.	4.3	28
42	Luminescent Coordination Polymers for Highly Sensitive Detection of Nitrobenzene. Crystal Growth and Design, 2015, 15, 4355-4362.	3.0	26
43	Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process. Sensors and Actuators B: Chemical, 2020, 311, 127891.	7.8	25
44	Pyridine derivative-induced fluorescence in multifunctional modified carbon dots and their application in thermometers. Journal of Materials Chemistry B, 2017, 5, 3964-3969.	5.8	18
45	A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. Dalton Transactions, 2013, 42, 9423.	3.3	17
46	Novel N, F co-doped carbon dots to detect sulfide and cadmium ions with high selectivity and sensitivity based on a "turn-off-on―mechanism. Dyes and Pigments, 2022, 203, 110379.	3.7	15
47	Homochiral metal–organic porous materials for enantioselective recognition and electrocatalysis. CrystEngComm, 2013, 15, 3288.	2.6	14
48	Simultaneous enzymatic activity modulation and rapid determination of enzyme kinetics by highly crystalline graphite dots. Nanoscale, 2017, 9, 8410-8417.	5.6	12
49	Nonporous homochiral copper-based coordination polymers for enantioselective recognition and electrocatalysis. Inorganic Chemistry Communication, 2014, 40, 31-34.	3.9	10
50	Novel fluorescent probes based on nitrogen–sulfur co-doped carbon dots for chromium ion detection. New Journal of Chemistry, 2021, 45, 4828-4834.	2.8	10
51	Size-dependent and real-time effect of SiO2 nanoparticles on a single living HeLa Cell's membrane permeability. Journal of Materials Chemistry B, 2015, 3, 1198-1203.	5.8	7
52	Concentrations dominated membrane permeability variation by fullerol nanoparticles on a single living HeLa cell. Journal of Materials Chemistry B, 2016, 4, 5755-5760.	5.8	0