
Chin-Ho Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/899722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Betulinic Acid and Dihydrobetulinic Acid Derivatives as Potent Anti-HIV Agents1. Journal of Medicinal Chemistry, 1996, 39, 1016-1017.	2.9	262
2	Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Replication by Specific Targeting of the Final Step of Virion Maturation. Journal of Virology, 2004, 78, 922-929.	1.5	173
3	Betulinic acid derivatives as HIV-1 antivirals. Trends in Molecular Medicine, 2005, 11, 31-36.	3.5	166
4	Anti-AIDS Agents. 34.â€Synthesis and Structureâ^'Activity Relationships of Betulin Derivatives as Anti-HIV Agents. Journal of Medicinal Chemistry, 1998, 41, 4648-4657.	2.9	139
5	Functional Advantages of Porphyromonas gingivalis Vesicles. PLoS ONE, 2015, 10, e0123448.	1.1	118
6	Anti-AIDS Agents 69. Moronic Acid and Other Triterpene Derivatives as Novel Potent Anti-HIV Agents. Journal of Medicinal Chemistry, 2006, 49, 5462-5469.	2.9	113
7	Anti-AIDS agents—XXVII. Synthesis and anti-HIV activity of betulinic acid and dihydrobetulinic acid derivatives. Bioorganic and Medicinal Chemistry, 1997, 5, 2133-2143.	1.4	108
8	Proteasome Regulators: Activators and Inhibitors. Current Medicinal Chemistry, 2009, 16, 931-939.	1.2	96
9	Role of Human Immunodeficiency Virus (HIV) Type 1 Envelope in the Anti-HIV Activity of the Betulinic Acid Derivative IC9564. Antimicrobial Agents and Chemotherapy, 2001, 45, 60-66.	1.4	88
10	Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Letters, 2007, 581, 4955-4959.	1.3	87
11	Structural Rearrangements in the Transmembrane Glycoprotein after Receptor Binding. Immunological Reviews, 1994, 140, 93-104.	2.8	79
12	Stelleralides A–C, Novel Potent Anti-HIV Daphnane-Type Diterpenoids from <i>Stellera chamaejasm</i> e L Organic Letters, 2011, 13, 2904-2907.	2.4	78
13	Synthesis and anti-HIV activity of bi-functional betulinic acid derivatives. Bioorganic and Medicinal Chemistry, 2006, 14, 2279-2289.	1.4	76
14	Anti-AIDS Agents 49.1Synthesis, Anti-HIV, and Anti-Fusion Activities of IC9564 Analogues Based on Betulinic Acid. Journal of Medicinal Chemistry, 2002, 45, 4271-4275.	2.9	75
15	Fimbriaeâ€mediated outer membrane vesicle production and invasion of <i><scp>P</scp>orphyromonas gingivalis</i> . MicrobiologyOpen, 2015, 4, 53-65.	1.2	74
16	Anti-AIDS Agents. 78. Design, Synthesis, Metabolic Stability Assessment, and Antiviral Evaluation of Novel Betulinic Acid Derivatives as Potent Anti-Human Immunodeficiency Virus (HIV) Agents. Journal of Medicinal Chemistry, 2009, 52, 3248-3258.	2.9	72
17	Identification of Dihydrofuro[3,4- <i>d</i>]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties. Journal of Medicinal Chemistry, 2019, 62, 1484-1501.	2.9	70
18	New Betulinic Acid Derivatives for Bevirimat-Resistant Human Immunodeficiency Virus Type-1. Journal of Medicinal Chemistry, 2013, 56, 2029-2037.	2.9	69

#	Article	IF	CITATIONS
19	The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3',3'-dimethylsuccinyl}-betulinic acid. Retrovirology, 2004, 1, 15.	0.9	68
20	Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. European Journal of Medicinal Chemistry, 2018, 151, 339-350.	2.6	68
21	Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology, 2005, 332, 623-628.	1.1	66
22	Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. European Journal of Medicinal Chemistry, 2020, 190, 112085.	2.6	65
23	Aloperine and Its Derivatives as a New Class of HIV-1 Entry Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 240-244.	1.3	61
24	Anti-AIDS Agents 90. Novel C-28 Modified Bevirimat Analogues as Potent HIV Maturation Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 8128-8136.	2.9	54
25	Isolation, Structure Determination, and Anti-HIV Evaluation of Tigliane-Type Diterpenes and Biflavonoid from <i>Stellera chamaejasme</i> . Journal of Natural Products, 2013, 76, 852-857.	1.5	51
26	Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. European Journal of Medicinal Chemistry, 2018, 158, 478-492.	2.6	51
27	Identification and Synthesis of Quinolizidines with Anti-Influenza A Virus Activity. ACS Medicinal Chemistry Letters, 2014, 5, 942-946.	1.3	50
28	Oligoclonal CD8 Lymphocytes from Persons with Asymptomatic Human Immunodeficiency Virus (HIV) Type 1 Infection Inhibit DIV-1 Replication. Journal of Infectious Diseases, 1995, 172, 964-973.	1.9	49
29	Betulinic Acid Derivatives as Human Immunodeficiency Virus Type 2 (HIV-2) Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 7887-7891.	2.9	49
30	Bifunctional Anti-Human Immunodeficiency Virus Type 1 Small Molecules with Two Novel Mechanisms of Action. Antimicrobial Agents and Chemotherapy, 2004, 48, 663-665.	1.4	47
31	Diterpenes from the stem bark of Euphorbia neriifolia and their inÂvitro anti-HIV activity. Phytochemistry, 2018, 145, 40-47.	1.4	47
32	The discovery of a class of novel HIV-1 maturation inhibitors and their potential in the therapy of HIV. Expert Opinion on Investigational Drugs, 2005, 14, 681-693.	1.9	45
33	Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Advances, 2019, 9, 28961-28986.	1.7	42
34	Design, Synthesis, and Mechanism Study of Benzenesulfonamide-Containing Phenylalanine Derivatives as Novel HIV-1 Capsid Inhibitors with Improved Antiviral Activities. Journal of Medicinal Chemistry, 2020, 63, 4790-4810.	2.9	41
35	Betulinic Acid Derivatives That Target gp120 and Inhibit Multiple Genetic Subtypes of Human Immunodeficiency Virus Type 1. Antimicrobial Agents and Chemotherapy, 2008, 52, 128-136.	1.4	39
36	New betulinic acid derivatives as potent proteasome inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5944-5947.	1.0	38

#	Article	IF	CITATIONS
37	Stelleralides D–J and Anti-HIV Daphnane Diterpenes from <i>Stellera chamaejasme</i> . Journal of Natural Products, 2015, 78, 2712-2718.	1.5	38
38	Incorporation of Privileged Structures into Bevirimat Can Improve Activity against Wild-Type and Bevirimat-Resistant HIV-1. Journal of Medicinal Chemistry, 2016, 59, 9262-9268.	2.9	38
39	Identification, structural modification, and dichotomous effects on human immunodeficiency virus type 1 (HIV-1) replication of ingenane esters from Euphorbia kansui. European Journal of Medicinal Chemistry, 2018, 156, 618-627.	2.6	36
40	Molecular Targets of Anti-HIV-1 Triterpenes. Current Drug Targets Infectious Disorders, 2002, 2, 33-36.	2.1	35
41	Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β. Journal of Medicinal Chemistry, 2015, 58, 8638-8646.	2.9	35
42	Carolignans from the Aerial Parts of <i>Euphorbia sikkimensis</i> and Their Anti-HIV Activity. Journal of Natural Products, 2016, 79, 578-583.	1.5	35
43	Picomolar Dichotomous Activity of Gnidimacrin Against HIV-1. PLoS ONE, 2011, 6, e26677.	1.1	33
44	Synthesis of betulinic acid derivatives as entry inhibitors against HIV-1 and bevirimat-resistant HIV-1 variants. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5190-5194.	1.0	33
45	Synthesis and proteasome inhibition of glycyrrhetinic acid derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 6696-6701.	1.4	32
46	Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 68-71.	1.0	32
47	Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitor Agents: Optimization of Diarylanilines with High Potency against Wild-Type and Rilpivirine-Resistant E138K Mutant Virus. Journal of Medicinal Chemistry, 2016, 59, 3689-3704.	2.9	31
48	Potent Anti-HIV Ingenane Diterpenoids from <i>Euphorbia ebracteolata</i> . Journal of Natural Products, 2019, 82, 1587-1592.	1.5	30
49	Daphneodorins A–C, Anti-HIV Gnidimacrin Related Macrocyclic Daphnane Orthoesters from <i>Daphne odora</i> . Organic Letters, 2020, 22, 11-15.	2.4	30
50	Identification of highly potent and selective Cdc25 protein phosphatases inhibitors from miniaturization click-chemistry-based combinatorial libraries. European Journal of Medicinal Chemistry, 2019, 183, 111696.	2.6	26
51	Elimination of HIV-1 Latently Infected Cells by Gnidimacrin and a Selective HDAC Inhibitor. ACS Medicinal Chemistry Letters, 2018, 9, 268-273.	1.3	23
52	Bioactive ent-isopimarane diterpenoids from Euphorbia neriifolia. Phytochemistry, 2020, 175, 112373.	1.4	21
53	Carbazole Alkaloids from Clausena anisum-olens: Isolation, Characterization, and Anti-HIV Evaluation. Molecules, 2020, 25, 99.	1.7	20
54	Design, synthesis, and structure activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors. European Journal of Medicinal Chemistry, 2021, 215, 113287.	2.6	20

#	Article	IF	CITATIONS
55	Conformation of gp120 determines the sensitivity of HIV-1 DH012 to the entry inhibitor IC9564. Virology, 2004, 324, 525-530.	1.1	19
56	Phenolic Diterpenoid Derivatives as Anti-Influenza A Virus Agents. ACS Medicinal Chemistry Letters, 2015, 6, 355-358.	1.3	19
57	Anti-inflammatory and Anti-HIV Compounds from Swertia bimaculata. Planta Medica, 2017, 83, 1368-1373.	0.7	18
58	Rapid Recognition and Targeted Isolation of Anti-HIV Daphnane Diterpenes from Daphne genkwa Guided by UPLC-MSn. Journal of Natural Products, 2020, 83, 134-141.	1.5	18
59	Novel Betulinic Acid–Nucleoside Hybrids with Potent Anti-HIV Activity. ACS Medicinal Chemistry Letters, 2020, 11, 2290-2293.	1.3	18
60	Monoclonal Antibodies That Bind to the Core of Fusion-Active Glycoprotein 41. AIDS Research and Human Retroviruses, 2000, 16, 2037-2041.	0.5	17
61	Terpenes from <i>Euphorbia antiquorum</i> and Their <i>in Vitro</i> Antiâ€ <scp>HIV</scp> Activity. Chemistry and Biodiversity, 2018, 15, e1700560.	1.0	17
62	Kleinhospitine E and Cycloartane Triterpenoids from <i>Kleinhovia hospita</i> . Journal of Natural Products, 2018, 81, 1619-1627.	1.5	17
63	Role of Porphyromonas gingivalis outer membrane vesicles in oral mucosal transmission of HIV. Scientific Reports, 2018, 8, 8812.	1.6	17
64	Synthesis and Structure–Activity Relationship Correlations of Gnidimacrin Derivatives as Potent HIV-1 Inhibitors and HIV Latency Reversing Agents. Journal of Medicinal Chemistry, 2019, 62, 6958-6971.	2.9	17
65	Anti-HIV Tigliane Diterpenoids from <i>Wikstroemia scytophylla</i> . Journal of Natural Products, 2020, 83, 3584-3590.	1.5	17
66	Structure Optimization of Aloperine Derivatives as HIV-1 Entry Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1199-1203.	1.3	16
67	Isolation, Structural Elucidation, and Anti-HIV Activity of Daphnane Diterpenoids from <i>Daphne odora</i> . Journal of Natural Products, 2020, 83, 3270-3277.	1.5	16
68	Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Binding Domain of Porphyromonas gingivalis Gingipain. Antimicrobial Agents and Chemotherapy, 2006, 50, 3070-3074.	1.4	15
69	Anti-HIV tigliane diterpenoids from Reutealis trisperma. Phytochemistry, 2020, 174, 112360.	1.4	15
70	Design, synthesis, and evaluation of "dual-site―binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase. European Journal of Medicinal Chemistry, 2021, 211, 113063.	2.6	15
71	Noncytolytic CD8 T cell-mediated suppression of HIV replication. Seminars in Immunopathology, 1997, 18, 355-369.	4.0	14
72	Induction of a Nonproductive Conformational Change in gp120 by a Small Molecule HIV Type 1 Entry Inhibitor. AIDS Research and Human Retroviruses, 2007, 23, 28-32.	0.5	14

#	Article	IF	CITATIONS
73	Synthesis and proteasome inhibition of lithocholic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1926-1928.	1.0	14
74	Flavonoids Isolated from Heatâ€Processed <i>Epimedium koreanum</i> and Their Antiâ€HIVâ€1 Activities. Helvetica Chimica Acta, 2015, 98, 1177-1187.	1.0	14
75	Design, synthesis, and biologic evaluation of novel galloyl derivatives as <scp>HIV</scp> ″ <scp>RN</scp> ase H inhibitors. Chemical Biology and Drug Design, 2019, 93, 582-589.	1.5	14
76	Synthesis of Lithocholic Acid Derivatives as Proteasome Regulators. ACS Medicinal Chemistry Letters, 2012, 3, 925-930.	1.3	10
77	Two Small Molecules Block Oral Epithelial Cell Invasion by Porphyromons gingivalis. PLoS ONE, 2016, 11, e0149618.	1.1	10
78	LC-MS Identification, Isolation, and Structural Elucidation of Anti-HIV Tigliane Diterpenoids from Wikstroemia lamatsoensis. Journal of Natural Products, 2021, 84, 2366-2373.	1.5	10
79	Identification of anti-HIV macrocyclic daphnane orthoesters from Wikstroemia ligustrina by LC–MS analysis and phytochemical investigation. Journal of Natural Medicines, 2021, 75, 1058-1066.	1.1	9
80	Iridoids and sesquiterpenoids from Valeriana jatamansi and their anti-influenza virus activities. Bioorganic Chemistry, 2022, 121, 105692.	2.0	9
81	Discovery of novel 5-fluoro-N2,N4-diphenylpyrimidine-2,4-diamines as potent inhibitors against CDK2 and CDK9. MedChemComm, 2015, 6, 444-454.	3.5	8
82	Two new ursane-type triterpenoid saponins from Elsholtzia bodinieri. Archives of Pharmacal Research, 2016, 39, 771-777.	2.7	8
83	Discovery and synthesis of novel beesioside I derivatives with potent anti-HIV activity. European Journal of Medicinal Chemistry, 2019, 166, 159-166.	2.6	8
84	Discovery of novel non-covalent inhibitors selective to the β5-subunit of the human 20S proteasome. European Journal of Medicinal Chemistry, 2015, 98, 61-68.	2.6	7
85	The Role of Dynamin in HIV Type 1 Env-Mediated Cell–Cell Fusion. AIDS Research and Human Retroviruses, 2011, 27, 1013-1017.	0.5	6
86	Neutralization epitopes of the HIV-1 primary isolate DH012. Vaccine, 2003, 21, 3301-3306.	1.7	5
87	Paliasanines A–E, 3,4-Methylenedioxyquinoline Alkaloids Fused with a Phenyl-14-oxabicyclo[3.2.1]octane Unit from <i>Melochia umbellata</i> var. <i>deglabrata</i> . Journal of Natural Products, 2020, 83, 2931-2939.	1.5	5
88	New phorbol ester derivatives as potent anti-HIV agents. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128319.	1.0	5
89	Oxathiazole-2-one derivative of bortezomib: Synthesis, stability and proteasome inhibition activity. MedChemComm, 2011, 2, 1083.	3.5	4
90	Hyperdioxanes, dibenzo-1,4-dioxane derivatives from the roots of Hypericum ascyron. Journal of Natural Medicines, 2021, 75, 907-914.	1.1	4

#	Article	IF	CITATIONS
91	Design and Synthesis of Quinolizidine Derivatives as Influenza Virus and HIV-1 Inhibitors. Current Medicinal Chemistry, 2021, 28, 4995-5003.	1.2	4
92	Design, synthesis, and antiviral activity of phenylalanine derivatives as HIV-1 capsid inhibitors. Bioorganic and Medicinal Chemistry, 2021, 48, 116414.	1.4	4
93	Anti-HIV Tigliane-Type Diterpenoids from the Aerial Parts of <i>Wikstroemia lichiangensis</i> . Journal of Natural Products, 2022, 85, 1658-1664.	1.5	4
94	Discovery of potential dual-target prodrugs of HIV-1 reverse transcriptase and nucleocapsid protein 7. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127287.	1.0	3
95	Drug-like property-driven optimization of 4-substituted 1,5-diarylanilines as potent HIV-1 non-nucleoside reverse transcriptase inhibitors against rilpivirine-resistant mutant virus. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2788-2792.	1.0	2
96	Inhibitory Effect of b-AP15 on the 20S Proteasome. Biomolecules, 2014, 4, 931-939.	1.8	1