Ronald Koes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8997112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. Frontiers in Plant Science, 2022, 13, 830931.	3.6	6
2	An ancient RAB5 governs the formation of additional vacuoles and cell shape in petunia petals. Cell Reports, 2021, 36, 109749.	6.4	6
3	Identification and functional analysis of three new anthocyanin R2R3â€ <scp>MYB</scp> genes in <i>Petunia</i> . Plant Direct, 2019, 3, e00114.	1.9	32
4	The <scp>MYB</scp> 5â€driven <scp>MBW</scp> complex recruits a <scp>WRKY</scp> factor to enhance the expression of targets involved in vacuolar hyperâ€acidification and trafficking in grapevine. Plant Journal, 2019, 99, 1220-1241.	5.7	54
5	Alteration of flavonoid pigmentation patterns during domestication of food crops. Journal of Experimental Botany, 2019, 70, 3719-3735.	4.8	27
6	Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications, 2019, 10, 744.	12.8	90
7	Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. Plants, 2018, 7, 111.	3.5	56
8	Two <i>Silene vulgaris</i> copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 215, 1102-1114.	7.3	32
9	A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells. Cell Reports, 2017, 19, 2413-2422.	6.4	23
10	New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Frontiers in Plant Science, 2016, 7, 153.	3.6	90
11	Evolution of tonoplast Pâ€ <scp>ATP</scp> ase transporters involved in vacuolar acidification. New Phytologist, 2016, 211, 1092-1107.	7.3	37
12	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	9.3	311
13	Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis. Plant Cell, 2016, 28, 786-803.	6.6	128
14	Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity. Journal of Proteomics, 2016, 131, 38-47.	2.4	18
15	TRANSPARENT TESTA 13 is a tonoplast P _{3A} â€ <scp>ATP</scp> ase required for vacuolar deposition of proanthocyanidins in <i>Arabidopsis thaliana</i> seeds. Plant Journal, 2015, 82, 840-849.	5.7	71
16	Changes in <i>cis</i> -regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures. Development (Cambridge), 2015, 142, 2822-31.	2.5	16
17	Tomato R2R3-MYB Proteins SIANT1 and SIAN2: Same Protein Activity, Different Roles. PLoS ONE, 2015, 10, e0136365.	2.5	133
18	Arguments in the evo-devo debate: say it with flowers!. Journal of Experimental Botany, 2014, 65, 2231-2242.	4.8	25

#	Article	IF	CITATIONS
19	Genetic Control and Evolution of Anthocyanin Methylation Â. Plant Physiology, 2014, 165, 962-977.	4.8	45
20	Hyperacidification of Vacuoles by the Combined Action of Two Different P-ATPases in the Tonoplast Determines Flower Color. Cell Reports, 2014, 6, 32-43.	6.4	117
21	Transgenes and protein localization: myths and legends. Trends in Plant Science, 2013, 18, 473-476.	8.8	20
22	Brassinosteroid biosynthesis and signalling in Petunia hybrida. Journal of Experimental Botany, 2013, 64, 2435-2448.	4.8	17
23	Revealing impaired pathways in the <i>an11</i> mutant by highâ€ŧhroughput characterization of <i>Petunia axillaris</i> and <i>Petunia inflata</i> transcriptomes. Plant Journal, 2011, 68, 11-27.	5.7	35
24	One Protoplast Is Not the Other! Â. Plant Physiology, 2011, 156, 474-478.	4.8	93
25	Inflorescence development in petunia: through the maze of botanical terminology. Journal of Experimental Botany, 2010, 61, 2235-2246.	4.8	35
26	LEAFY blossoms. Trends in Plant Science, 2010, 15, 346-352.	8.8	174
27	Variations on a theme: Changes in the floral ABCs in angiosperms. Seminars in Cell and Developmental Biology, 2010, 21, 100-107.	5.0	110
28	Differential Recruitment of <i>WOX</i> Transcription Factors for Lateral Development and Organ Fusion in Petunia and <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 2269-2283.	6.6	203
29	Development of the Petunia Inflorescence. , 2009, , 179-197.		1
30	The Genetics of Flower Color. , 2009, , 269-299.		27
31	An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nature Cell Biology, 2008, 10, 1456-1462.	10.3	178
32	Evolution and development of virtual inflorescences. Trends in Plant Science, 2008, 13, 1-3.	8.8	22
33	Role of EVERGREEN in the Development of the Cymose Petunia Inflorescence. Developmental Cell, 2008, 15, 437-447.	7.0	70
34	Patterning of Inflorescences and Flowers by the F-Box Protein DOUBLE TOP and the LEAFY Homolog ABERRANT LEAF AND FLOWER of Petunia. Plant Cell, 2008, 20, 2033-2048.	6.6	113
35	Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development (Cambridge), 2007, 134, 1691-1701.	2.5	230
36	PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Transcription Factors of the Anthocyanin Pathway. Plant Cell, 2006, 18, 1274-1291.	6.6	335

#	Article	IF	CITATIONS
37	Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10, 236-242.	8.8	1,365
38	Use of Petunia to unravel plant meristem functioning. Trends in Plant Science, 2005, 10, 243-250.	8.8	35
39	Toward the Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches: B, C, and D Floral Organ Identity Functions Require SEPALLATA-Like MADS Box Genes in Petunia. Plant Cell, 2003, 15, 2680-2693.	6.6	188
40	ANTHOCYANIN1 of Petunia Controls Pigment Synthesis, Vacuolar pH, and Seed Coat Development by Genetically Distinct Mechanisms. Plant Cell, 2002, 14, 2121-2135.	6.6	241
41	FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes and Development, 2002, 16, 753-763.	5.9	166
42	Analysis of flower pigmentation mutants generated by random transposon mutagenesis inPetunia hybrida. Plant Journal, 2002, 13, 39-50.	5.7	103
43	The molecular basis of the high linoleic acid content in Petunia seed oil: analysis of a seed-specific linoleic acid mutant. Biochemical Society Transactions, 2000, 28, 631-632.	3.4	4
44	anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes. Plant Cell, 2000, 12, 1619.	6.6	9
45	anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes. Plant Cell, 2000, 12, 1619-1631.	6.6	442
46	Epigenetic Interactions among Three dTph1 Transposons in Two Homologous Chromosomes Activate a New Excision-Repair Mechanism in Petunia. Plant Cell, 1999, 11, 1319.	6.6	2
47	Epigenetic Interactions among Three dTph1 Transposons in Two Homologous Chromosomes Activate a New Excision–Repair Mechanism in Petunia. Plant Cell, 1999, 11, 1319-1336.	6.6	41
48	Novel coloured flowers. Current Opinion in Biotechnology, 1999, 10, 198-201.	6.6	89
49	Selection of high-affinity phage antibodies from phage display libraries. Nature Biotechnology, 1999, 17, 397-399.	17.5	94
50	Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color. Plant Cell, 1999, 11, 1433-1444.	6.6	545
51	Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color. Plant Cell, 1999, 11, 1433.	6.6	58
52	Functional Complementation of Anthocyanin Sequestration in the Vacuole by Widely Divergent Glutathione S-Transferases. Plant Cell, 1998, 10, 1135-1149.	6.6	391
53	Analysis of bHLH and MYB domain proteins: speciesâ€specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant Journal, 1998, 13, 475-488.	5.7	392
54	How genes paint flowers and seeds. Trends in Plant Science, 1998, 3, 212-217.	8.8	804

#	Article	IF	CITATIONS
55	The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals Genes and Development, 1997, 11, 1422-1434.	5.9	331
56	The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries. Cell, 1996, 85, 159-170.	28.9	928
57	Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8149-8153.	7.1	127
58	Floriculture: genetic engineering of commercial traits. Trends in Biotechnology, 1995, 13, 350-355.	9.3	54
59	A general method to isolate genes tagged by a high copy number transposable element. Plant Journal, 1995, 7, 677-685.	5.7	53
60	Genetic characterisation of Act1, the activator of a non-autonomous transposable element from Petunia hybrida. Theoretical and Applied Genetics, 1995, 91, 110-117.	3.6	19
61	Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida. Plant Journal, 1994, 6, 295-310.	5.7	82
62	Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles. Plant Journal, 1994, 5, 69-80.	5.7	160
63	The maize zein gene zE19 contains two distinct promoters which are independently activated in endosperm and anthers of transgenic Petunia plants. Plant Molecular Biology, 1990, 15, 81-93.	3.9	35
64	Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene Plant Cell, 1990, 2, 393-401.	6.6	99
65	Chalcone Synthase Promoters in Petunia Are Active in Pigmented and Unpigmented Cell Types Plant Cell, 1990, 2, 379-392.	6.6	89
66	The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Molecular Biology, 1989, 12, 213-225.	3.9	205
67	Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene, 1989, 81, 245-257.	2.2	180
68	An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature, 1988, 333, 866-869.	27.8	459
69	Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes EMBO Journal, 1988, 7, 1257-1263.	7.8	266
70	The chalcone synthase multigene family of Petunia hybrida (V30): sequence homology, chromosomal localization and evolutionary aspects. Plant Molecular Biology, 1987, 10, 159-169.	3.9	98
71	Floral tissue ofPetunia hybrida(V30) expresses only one member of the chalcone synthase multigene family. Nucleic Acids Research, 1986, 14, 5229-5239.	14.5	122
72	Physical mapping, nucleotide sequencing and expression in E. coli minicells of the gene for the large subunit of ribulose bisphosphate carboxylase from Petunia hybrida. Current Genetics, 1984, 8, 231-241.	1.7	20