Kangjia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/899692/publications.pdf

Version: 2024-02-01

414414 331670 1,395 87 21 32 h-index citations g-index papers 87 87 87 257 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PHYSICAL INSIGHT OF LOCAL FRACTIONAL CALCULUS AND ITS APPLICATION TO FRACTIONAL KDV–BURGERS–KURAMOTO EQUATION. Fractals, 2019, 27, 1950122.	3.7	85
2	A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. European Physical Journal Plus, 2020, 135, 1.	2.6	73
3	Soliton solutions to the Fokas system arising in monomode optical fibers. Optik, 2022, 251, 168319.	2.9	56
4	Abundant exact soliton solutions to the Fokas system. Optik, 2022, 249, 168265.	2.9	51
5	ON A HIGH-PASS FILTER DESCRIBED BY LOCAL FRACTIONAL DERIVATIVE. Fractals, 2020, 28, 2050031.	3.7	48
6	A modification of the reduced differential transform method for fractional calculus. Thermal Science, 2018, 22, 1871-1875.	1.1	48
7	Variational theory and new abundant solutions to the $(1+2)$ -dimensional chiral nonlinear SchrĶdinger equation in optics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 412, 127588.	2.1	43
8	Generalized variational principle and periodic wave solution to the modified equal width-Burgers equation in nonlinear dispersion media. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 419, 127723.	2.1	36
9	Abundant analytical solutions to the new coupled Konno-Oono equation arising in magnetic field. Results in Physics, 2021, 31, 104931.	4.1	36
10	Periodic solution of the time-space fractional complex nonlinear Fokas-Lenells equation by an ancient Chinese algorithm. Optik, 2021, 243, 167461.	2.9	35
11	The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 4669-4675.	6.4	34
12	A NEW PERSPECTIVE ON THE STUDY OF THE FRACTAL COUPLED BOUSSINESQ–BURGER EQUATION IN SHALLOW WATER. Fractals, 2021, 29, 2150122.	3.7	33
13	VARIATIONAL PRINCIPLE AND APPROXIMATE SOLUTION FOR THE GENERALIZED BURGERS–HUXLEY EQUATION WITH FRACTAL DERIVATIVE. Fractals, 2021, 29, 2150044.	3.7	32
14	A new analysis for Klein-Gordon model with local fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 3309-3313.	6.4	29
15	Solitary and periodic wave solutions of the generalized fourthâ€order Boussinesq equation via He's variational methods. Mathematical Methods in the Applied Sciences, 2021, 44, 5617-5625.	2.3	27
16	SOLITARY WAVES OF THE FRACTAL REGULARIZED LONG-WAVE EQUATION TRAVELING ALONG AN UNSMOOTH BOUNDARY. Fractals, 2022, 30, .	3.7	27
17	Traveling wave solutions of the Gardner equation in dusty plasmas. Results in Physics, 2022, 33, 105207.	4.1	27
18	VARIATIONAL PRINCIPLES FOR FRACTAL WHITHAM–BROER–KAUP EQUATIONS IN SHALLOW WATER. Fractals 2021, 29, 2150028.	⁵ '3.7	26

#	Article	IF	Citations
19	VARIATIONAL PRINCIPLE AND APPROXIMATE SOLUTION FOR THE FRACTAL GENERALIZED BENJAMIN–BONA–MAHONY–BURGERS EQUATION IN FLUID MECHANICS. Fractals, 2021, 29, 2150075.	3.7	26
20	Investigation into the Explicit Solutions of the Integrable $(2+1)\hat{a}\in$ "Dimensional Maccari System via the Variational Approach. Axioms, 2022, 11, 234.	1.9	26
21	Periodic solution of the $(2\hat{A}+\hat{A}1)$ -dimensional nonlinear electrical transmission line equation via variational method. Results in Physics, 2021, 20, 103666.	4.1	25
22	Constructions of new abundant traveling wave solutions for system of the ion sound and Langmuir waves by the variational direct method. Results in Physics, 2021, 26, 104375.	4.1	24
23	VARIATIONAL PRINCIPLE, SOLITARY AND PERIODIC WAVE SOLUTIONS OF THE FRACTAL MODIFIED EQUAL WIDTH EQUATION IN PLASMA PHYSICS. Fractals, 2021, 29, 2150115.	3.7	23
24	RESEARCH ON THE NONLINEAR VIBRATION OF CARBON NANOTUBE EMBEDDED IN FRACTAL MEDIUM. Fractals, 2022, 30, .	3.7	23
25	ABUNDANT EXACT TRAVELING WAVE SOLUTIONS TO THE LOCAL FRACTIONAL (3+1)-DIMENSIONAL BOITI–LEON–MANNA–PEMPINELLI EQUATION. Fractals, 2022, 30, .	3.7	23
26	Exact traveling wave solutions for the system of the ion sound and Langmuir waves by using three effective methods. Results in Physics, 2022, 35, 105390.	4.1	23
27	The Fractional Sallen-Key Filter Described by Local Fractional Derivative. IEEE Access, 2020, 8, 166377-166383.	4.2	21
28	On new abundant solutions of the complex nonlinear Fokas–Lenells equation in optical fiber. Mathematical Methods in the Applied Sciences, 2021, 44, 13881-13893.	2.3	21
29	Investigation of the periodic solution of the time-space fractional Sasa-Satsuma equation arising in the monomode optical fibers. Europhysics Letters, 0, , .	2.0	21
30	Study on the explicit solutions of the Benney–Luke equation via the variational direct method. Mathematical Methods in the Applied Sciences, 2021, 44, 14173-14183.	2.3	20
31	On new abundant exact traveling wave solutions to the local fractional Gardner equation defined on Cantor sets. Mathematical Methods in the Applied Sciences, 0, , .	2.3	18
32	Gamma function method for the nonlinear cubic-quintic Duffing oscillators. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 216-222.	2.9	17
33	Periodic wave solution of the Kundu-Mukherjee-Naskar equation in birefringent fibers via the Hamiltonian-based algorithm. Europhysics Letters, 0, , .	2.0	17
34	A fast insight into the nonlinear oscillation of nano-electro mechanical resonators considering the size effect and the van der Waals force. Europhysics Letters, 0, , .	2.0	16
35	Periodic solution of the time-space fractional Sasa-Satsuma equation in the monomode optical fibers by the energy balance theory. Europhysics Letters, 0, , .	2.0	16
36	A <mml:math altimg="si29.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>a,~</mml:mi></mml:mrow></mml:math> -order R-L high-pass filter modeled by local fractional derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 3255-3259.	6.4	15

#	Article	IF	CITATIONS
37	A fractal resistance-capacitance circuit model for the current flowing in porous media. Thermal Science, 2021, 25, 1477-1481.	1.1	15
38	On abundant wave structures of the unsteady korteweg-de vries equation arising in shallow water. Journal of Ocean Engineering and Science, 2023, 8, 595-601.	4.3	15
39	APPLICATION OF THE EXTENDED F-EXPANSION METHOD FOR SOLVING THE FRACTIONAL GARDNER EQUATION WITH CONFORMABLE FRACTIONAL DERIVATIVE. Fractals, 2022, 30, .	3.7	15
40	Study on the nonlinear vibration of embedded carbon nanotube via the Hamiltonian-based method. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 112-117.	2.9	13
41	Exact traveling wave solutions to the local fractional (3+1)-dimensional Jimbo-Miwa equation on Cantor sets. Fractals, 0 , , .	3.7	13
42	A fast insight into the nonlinear oscillators with coordinate-dependent mass. Results in Physics, 2022, 39, 105759.	4.1	13
43	A new fractal viscoelastic element: Promise and applications to Maxwell-rheological model. Thermal Science, 2021, 25, 1221-1227.	1.1	12
44	Generalized variational principles of the Benney-Lin equation arising in fluid dynamics. Europhysics Letters, 0, , .	2.0	12
45	An Analytical Model for Steady-State and Transient Temperature Fields in 3-D Integrated Circuits. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1026-1039.	2.5	11
46	He's variational method for the time–space fractional nonlinear Drinfeld–Sokolov–Wilson system. Mathematical Methods in the Applied Sciences, 2023, 46, 7798-7806.	2.3	11
47	Investigation to the local fractional Fokas system on Cantor set by a novel technology. Fractals, 0, , .	3.7	11
48	An analytical thermal model for three-dimensional integrated circuits with integrated micro-channel cooling. Thermal Science, 2017, 21, 1601-1606.	1.1	10
49	A FRACTAL MODIFICATION OF THE SHARMA–TASSO–OLVER EQUATION AND ITS FRACTAL GENERALIZED VARIATIONAL PRINCIPLE. Fractals, 2022, 30, .	3.7	10
50	The Ultra-Low-k Dielectric Materials for Performance Improvement in Coupled Multilayer Graphene Nanoribbon Interconnects. Electronics (Switzerland), 2019, 8, 849.	3.1	9
51	A Novel Method for Image Segmentation Based on Simplified Pulse Coupled Neural Network and Gbest Led Gravitational Search Algorithm. IEEE Access, 2019, 7, 21310-21330.	4.2	9
52	Variational Principle and Approximate Solution for the Fractal Vibration Equation in a Microgravity Space. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2022, 46, 161-165.	1.3	9
53	A variational principle for the $(3\hat{A}+\hat{A}1)$ -dimensional extended quantum Zakharov-Kuznetsov equation in plasma physics. Europhysics Letters, 2020, 132, 44002.	2.0	7
54	Thermal management of the hotspots in 3-D integrated circuits. Thermal Science, 2018, 22, 1685-1690.	1.1	7

#	Article	IF	CITATIONS
55	A neural network method for reliability optimizations of complex systems. Wuhan University Journal of Natural Sciences, 2007, 12, 139-142.	0.4	6
56	Collaborative Applying the Ultra-low-k Dielectric and the High-k Dielectric Materials for Performance Enhancement in Coupled Multilayer Graphene Nanoribbon Interconnects. IEEE Journal of the Electron Devices Society, 2020, 8, 200-212.	2.1	6
57	On the new exact traveling wave solutions of the time-space fractional strain wave equation in microstructured solids via the variational method. Communications in Theoretical Physics, 2021, 73, 045001.	2.5	6
58	Abundant optical soliton structures to the Fokas system arising in monomode optical fibers. Open Physics, 2022, 20, 493-506.	1.7	5
59	Integrated microchannel cooling in a three dimensional integrated circuit: A thermal management. Thermal Science, 2016, 20, 899-902.	1.1	4
60	Heat Transfer Analysis of Flat Heat Pipe With Enhanced Microchannel Shape. IEEE Access, 2021, 9, 120833-120843.	4.2	3
61	Thermal management of 3-D integrated circuits with special structures. Thermal Science, 2021, 25, 2221-2225.	1.1	3
62	Generalized Variational Principle for the Fractal (2 + 1)-Dimensional Zakharov–Kuznetsov Equation in Quantum Magneto-Plasmas. Symmetry, 2021, 13, 1022.	2.2	3
63	Optimization of open micro-channel heat sink with pin fins by multi-objective genetic algorithm. Thermal Science, 2022, 26, 3653-3665.	1.1	3
64	An unsupervised font style transfer model based on generative adversarial networks. Multimedia Tools and Applications, 2022, 81, 5305-5324.	3.9	3
65	A single-photon fault-detection method for nanocircuits that use GaN material. Science China Technological Sciences, 2014, 57, 270-277.	4.0	2
66	Detecting the micro-defects in the GaAs materials by time resolved emissions. Science Bulletin, 2014, 59, 1838-1844.	1.7	2
67	On a variational principle for the fractal Wu–Zhang system arising in shallow water. GEM - International Journal on Geomathematics, 2021, 12, 1.	1.6	2
68	A Micro-Channel Cooling Model for a Three-Dimensional Integrated Circuit Considering Through-Silicon Vias. Micro and Nanosystems, 2021, 13, 49-54.	0.6	2
69	Periodic waves travelling along an unsmooth boundary via the fractal variational theory. Results in Physics, 2021, 28, 104549.	4.1	2
70	Solitary waves of the fractal Whitham–Broer–Kaup equation in shallow water. GEM - International Journal on Geomathematics, 2021, 12, 1.	1.6	2
71	Thermal management of the through silicon vias in 3-D integrated circuits. Thermal Science, 2019, 23, 2157-2162.	1.1	2
72	Thermal optimization of a 3-D integrated circuit. Thermal Science, 2020, 24, 2615-2620.	1.1	2

#	Article	IF	CITATIONS
73	Abundant optical solitons of the (2Â+Â1)-dimensional Biswas-Milovice equation arising in optical fiber. Optik, 2022, 252, 168510.	2.9	2
74	Effective Hardware Accelerator for 2D DCT/IDCT Using Improved Loeffler Architecture. IEEE Access, 2022, 10, 11011-11020.	4.2	2
75	Study on abundant analytical solutions of the new coupled Konno–Oono equation in the magnetic field. Open Physics, 2022, 20, 390-401.	1.7	2
76	Circuit testable design and universal test sets for multiple-valued logic functions. Journal of Electronics, 2007, 24, 138-144.	0.2	1
77	Effects of Dummy Thermal Vias on Interconnect Delay and Power Dissipation of Very Large Scale Integration Circuits. Wuhan University Journal of Natural Sciences, 2018, 23, 438-446.	0.4	1
78	Optimization of a 3-D high-power LED lamp: Orthogonal experiment method and experimental verification. Thermal Science, 2021, 25, 1495-1500.	1.1	1
79	Study on the periodic solution of the (3+1)-dimensional extended quantum Zakharov-Kuznetsov equation in plasma physics. Europhysics Letters, 0, , .	2.0	1
80	A new RLC series-resonant circuit modeled by local fractional derivative. Thermal Science, 2021, 25, 4569-4576.	1.1	1
81	Real-time defogging hardware accelerator based on improved dark channel prior and adaptive guided filtering. Journal of Electronic Imaging, 2022, 31, .	0.9	1
82	Taylor series solution for the non-linear Emden-Fowler equations. Thermal Science, 2022, 26, 2693-2697.	1.1	1
83	A new fractional thermal model for the Cu/Low-k interconnects in nanometer integrated circuit. Thermal Science, 2022, 26, 2413-2418.	1.1	1
84	Fault detection test set for testable realizations of logic functions with ESOP expressions. Journal of Electronics, 2007, 24, 238-244.	0.2	0
85	A Testing Approach for MOS Circuit Using Single-Photon Detectors Under High Magnetic Fields. Journal of Low Temperature Physics, 2013, 170, 403-408.	1.4	0
86	He's variational method for the time-space fractal (3Â+Â1)-dimensional extended quantum Zakharov-Kuznetsov equation in plasma physics. Europhysics Letters, 2021, 134, 20006.	2.0	0
87	Low power test generation of digital circuits by using genetic simulated annealing for the reordering of test vectors. , 2013, , .		0