
## Gustavo Pierdominici-Sottile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8996605/publications.pdf

Version: 2024-02-01



Gustavo

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Recognition and Binding of RsmE to an ACGAC Motif of RsmZ: Insights from Molecular Dynamics<br>Simulations. Journal of Chemical Information and Modeling, 2022, 62, 6614-6627.                                                                                           | 5.4 | 2         |
| 2  | Molecular Dynamics Simulations Unveil the Basis of the Sequential Binding of RsmE to the Noncoding RNA RsmZ. Journal of Physical Chemistry B, 2021, 125, 3045-3056.                                                                                                      | 2.6 | 4         |
| 3  | Ion Selectivity in P2X Receptors: A Comparison between hP2X3 and zfP2X4. Journal of Physical Chemistry B, 2021, , .                                                                                                                                                      | 2.6 | 1         |
| 4  | Positively Charged Residues in the Head Domain of P2X4 Receptors Assist the Binding of ATP. Journal of Chemical Information and Modeling, 2020, 60, 923-932.                                                                                                             | 5.4 | 1         |
| 5  | Molecular Dynamics Simulations of Substrate Release from <i>Trypanosoma cruzi</i> UDP-Galactopyranose Mutase. Journal of Chemical Information and Modeling, 2019, 59, 809-817.                                                                                           | 5.4 | 4         |
| 6  | Charge Discrimination in P2X4 Receptors Occurs in Two Consecutive Stages. Journal of Physical Chemistry B, 2019, 123, 1017-1025.                                                                                                                                         | 2.6 | 2         |
| 7  | Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase. Biochemistry, 2018, 57, 3713-3721.                                                                                                                                                               | 2.5 | 3         |
| 8  | Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins. Journal of<br>Chemical Information and Modeling, 2017, 57, 826-834.                                                                                                                | 5.4 | 20        |
| 9  | The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation. Biophysical Journal, 2016, 111, 2642-2650.                                                                                                                                                      | 0.5 | 10        |
| 10 | New insights into the meaning and usefulness of principal component analysis of concatenated trajectories. Journal of Computational Chemistry, 2015, 36, 424-432.                                                                                                        | 3.3 | 9         |
| 11 | QM/MM Molecular Dynamics Study of the Galactopyranose → Galactofuranose Reaction Catalysed by<br>Trypanosoma cruzi UDP-Galactopyranose Mutase. PLoS ONE, 2014, 9, e109559.                                                                                               | 2.5 | 6         |
| 12 | Freeâ€energy computations identify the mutations required to confer transâ€sialidase activity into<br><i>Trypanosoma rangeli</i> sialidase. Proteins: Structure, Function and Bioinformatics, 2014, 82,<br>424-435.                                                      | 2.6 | 10        |
| 13 | Unraveling the Differences of the Hydrolytic Activity of <i>Trypanosoma cruzi</i><br><i>trans</i> -Sialidase and <i>Trypanosoma rangeli</i> Sialidase: A Quantum Mechanics–Molecular<br>Mechanics Modeling Study. Journal of Physical Chemistry B, 2014, 118, 5807-5816. | 2.6 | 13        |
| 14 | Free Energy Study of the Catalytic Mechanism of <i>Trypanosoma cruzitrans</i> -Sialidase. From the Michaelis Complex to the Covalent Intermediate. Biochemistry, 2011, 50, 10150-10158.                                                                                  | 2.5 | 40        |
| 15 | Proton Transfer Facilitated by Ligand Binding. An Energetic Analysis of the Catalytic Mechanism of Trypanosoma cruziTrans-Sialidase. Biochemistry, 2011, 50, 836-842.                                                                                                    | 2.5 | 33        |
| 16 | Applications of Mixed-Quantum/Classical Trajectories to the Study of Nuclear Quantum Effects in<br>Chemical Reactions and Vibrational Relaxation Processes. Advances in Quantum Chemistry, 2010, ,<br>247-282.                                                           | 0.8 | 7         |
| 17 | Evaluation of the kinetic isotope effect in methylamine dehydrogenase using the wave function propagation approach. Chemical Physics, 2009, 363, 59-64.                                                                                                                  | 1.9 | 6         |
| 18 | The role of residue Thr122 of methylamine dehydrogenase on the proton transfer from the iminoquinone intermediate to residue Asp76. Chemical Physics Letters, 2008, 456, 243-246.                                                                                        | 2.6 | 2         |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Molecular Dynamics Study of the Active Site of Methylamine Dehydrogenase. Journal of Physical<br>Chemistry B, 2006, 110, 11592-11599.              | 2.6 | 9         |
| 20 | Quantum study of the structure of the active site of methylamine dehydrogenase. International<br>Journal of Quantum Chemistry, 2005, 105, 937-945. | 2.0 | 8         |